728x90
๋ฐ˜์‘ํ˜•

๊ฐœ๋ฐœ Code 50

[Python][AI] ๋กœ๋˜ ๋ฒˆํ˜ธ ์˜ˆ์ธก ํ…Œ์ŠคํŠธ ์ง„ํ–‰ ๋ฐ ๊ฒฐ๊ณผ ๋ถ„์„

2025.02.18 - [๊ฐœ๋ฐœ Code/์ธ๊ณต์ง€๋Šฅ A.I.] - [Python][AI] ํ•œ๊ตญ ๋กœ๋˜ ๋ถ„์„: ๋‹น์ฒจ ํ™•๋ฅ ๊ณผ ์˜ˆ์ธก์˜ ๋ถˆ๊ฐ€๋Šฅ์„ฑ2025.02.19 - [๊ฐœ๋ฐœ Code/์ธ๊ณต์ง€๋Šฅ A.I.] - [Python][AI] ํ•œ๊ตญ ๋กœ๋˜ ๋ถ„์„: ๋‹น์ฒจ ๋ฒˆํ˜ธ ๋ถ„์„๊ณผ ํŒจํ„ด ์ฐพ๊ธฐ(EDA)2025.02.24 - [๊ฐœ๋ฐœ Code/์ธ๊ณต์ง€๋Šฅ A.I.] - [Python][AI] ํ•œ๊ตญ ๋กœ๋˜ ๋ถ„์„ : ์ถ”๊ฐ€ EDA ๋ฐ ML ๋ฒˆํ˜ธ ์˜ˆ์ธก ๋กœ๋˜ ๋ฒˆํ˜ธ ์˜ˆ์ธก์„ ์œ„ํ•œ ์ถ”๊ฐ€ ํ…Œ์ŠคํŠธ๋ฅผ ์ง„ํ–‰ํ•˜์˜€๋‹ค. ์ด๋ฒˆ ํ…Œ์ŠคํŠธ์—์„œ๋Š” ๋จธ์‹ ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜ ๋ชจ๋ธ์„ ํ™œ์šฉํ•˜์—ฌ ๋กœ๋˜ ๋‹น์ฒจ ๋ฒˆํ˜ธ๋ฅผ ์˜ˆ์ธกํ•˜๊ณ , ๊ทธ ์„ฑ๋Šฅ์„ ํ‰๊ฐ€ํ•˜๋Š” ๊ณผ์ •์„ ์ง„ํ–‰ํ•˜์˜€๋‹ค.1. ์˜ˆ์ธก ๋ชจ๋ธ ๊ฐœ์š”์˜ˆ์ธก์„ ์œ„ํ•ด CatBoost, XGBoost, LightGBM, RandomForest ์ด 4๊ฐ€์ง€ ๋จธ์‹ ๋Ÿฌ๋‹ ๋ชจ๋ธ์„ ์‚ฌ์šฉํ•˜..

[Python][AI] ์•„๊ธฐ์˜ ์‹ฌ์žฅ ์†Œ๋ฆฌ๋กœ ์„ฑ๋ณ„ ์˜ˆ์ธก? – ๋ฐ์ดํ„ฐ์…‹๊ณผ ๋…ผ๋ฌธ ์†Œ๊ฐœ

์•„๋‚ด๊ฐ€ ์ž„์‹ ํ•˜์—ฌ ์–ผ๋งˆ์ „์— ์‚ฐ๋ถ€์ธ๊ณผ๋ฅผ ๋‹ค๋…€์™”์Šต๋‹ˆ๋‹ค. ์•„์ง 1.5cm์— ๋ถˆ๊ณผํ•œ ํƒœ์•„์˜ ์‹ฌ์žฅ ์†Œ๋ฆฌ๋ฅผ ๋“ค์œผ๋‹ˆ ์‹ฌ์ •์„ ์ด๋ฃจ ๋งํ•˜๊ธฐ ์–ด๋ ต๋”๊ตฐ์š”. ๋ณ‘์›์„ ๋‚˜์˜ค๊ณ  ์นœ๊ตฌ๋“ค๊ณผ ์–˜๊ธฐ๋ฅผ ๋‚˜๋ˆ ๋ณด๋‹ˆ ์‹ฌ์žฅ ์†Œ๋ฆฌ๋ฅผ ๋“ฃ๊ณ  ์•„๋“ค์ธ์ง€ ๋”ธ์ธ์ง€ ํŒ๋‹จํ•  ์ˆ˜ ์žˆ๋‹ค๊ณ  ํ•ฉ๋‹ˆ๋‹ค. ๊ธฐ์ฐจ์†Œ๋ฆฌ์™€ ๋น„์Šทํ•˜๋‹ค๋ฉด ์•„๋“ค, ๋ง๋ฐœ๊ตฝ ์†Œ๋ฆฌ๊ฐ€ ๋‚œ๋‹ค๋ฉด ๋”ธ์ด๋ผ๋Š” ์–˜๊ธฐ๋ฅผ ๋“ค์–ด ๋ณด์…จ๋‚˜์š”? ์ด์— ํ˜ธ๊ธฐ์‹ฌ์ด ์ƒ๊ฒจ ์—ฐ๊ตฌ ๊ฒฐ๊ณผ๊ฐ€ ์žˆ๋Š”์ง€ ์ฐพ์•„๋ณด์•˜๊ณ , ์ฐธ๊ณ ํ• ๋งŒํ•œ ๋ฐ์ดํ„ฐ์…‹๊ณผ ์—ฐ๊ตฌ ๊ฒฐ๊ณผ๋ฅผ ์ฐพ์„ ์ˆ˜ ์žˆ์—ˆ์Šต๋‹ˆ๋‹ค. ๋ฐ์ดํ„ฐ์…‹๊ณผ ์—ฐ๊ตฌ ๊ฒฐ๊ณผ๋ฅผ ์†Œ๊ฐœํ•˜๊ณ  ์‹ค์Šต์„ ์ง„ํ–‰ํ•˜๋ฉฐ ์•„๋“ค์ผ์ง€ ๋”ธ์ผ์ง€ ํŒ๋ณ„ํ•˜๋Š” ์‹ค์Šต์„ ์ง„ํ–‰ํ•˜๊ณ ์ž ํ•ฉ๋‹ˆ๋‹ค.1. Shiraz University Fetal Heart Sounds Database(SUFHSDB) ์†Œ๊ฐœSUFHSDB๋Š” ์ด๋ž€ Shiraz University์—์„œ ์ˆ˜์ง‘ํ•œ ํƒœ์•„ ๋ฐ ์‚ฐ๋ชจ์˜ ์‹ฌ..

[Python][AI] ํ•œ๊ตญ ๋กœ๋˜ ๋ถ„์„ : ์ถ”๊ฐ€ EDA ๋ฐ ML ๋ฒˆํ˜ธ ์˜ˆ์ธก

2025.02.18 - [๊ฐœ๋ฐœ Code/์ธ๊ณต์ง€๋Šฅ A.I.] - [Python][AI] ํ•œ๊ตญ ๋กœ๋˜ ๋ถ„์„: ๋‹น์ฒจ ํ™•๋ฅ ๊ณผ ์˜ˆ์ธก์˜ ๋ถˆ๊ฐ€๋Šฅ์„ฑ2025.02.19 - [๊ฐœ๋ฐœ Code/์ธ๊ณต์ง€๋Šฅ A.I.] - [Python][AI] ํ•œ๊ตญ ๋กœ๋˜ ๋ถ„์„: ๋‹น์ฒจ ๋ฒˆํ˜ธ ๋ถ„์„๊ณผ ํŒจํ„ด ์ฐพ๊ธฐ(EDA) ๋กœ๋˜ ๋ฐ์ดํ„ฐ ๋ถ„์„์„ ํ†ตํ•ด ๋‹น์ฒจ ๋ฒˆํ˜ธ์˜ ํŒจํ„ด์„ ์ฐพ์•„๋ณด๊ณ , XGBoost๋ฅผ ํ™œ์šฉํ•˜์—ฌ ๋‹ค์Œ ๋‹น์ฒจ ๋ฒˆํ˜ธ๋ฅผ ์˜ˆ์ธกํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์†Œ๊ฐœํ•œ๋‹ค. ์ด๋ฒˆ ๋ถ„์„์—์„œ๋Š” ํ™€์ˆ˜/์ง์ˆ˜ ๋น„์œจ, ๋‚ฎ์€ ์ˆซ์ž vs ๋†’์€ ์ˆซ์ž ๋น„์œจ, ์›”๋ณ„ ๋‹น์ฒจ ๋ฒˆํ˜ธ ๋ถ„์„ ๋“ฑ์„ ์ง„ํ–‰ํ•˜๊ณ , ๋จธ์‹ ๋Ÿฌ๋‹ ๋ชจ๋ธ์„ ํ™œ์šฉํ•ด ๋ฒˆํ˜ธ๋ฅผ ์˜ˆ์ธกํ•ด๋ณผ ๊ฒƒ์ด๋‹ค.1. ํ™€์ˆ˜ vs ์ง์ˆ˜ and ๋‚ฎ์€ ์ˆซ์ž(1~22) vs ๋†’์€ ์ˆซ์ž(23~45) ๋น„์œจ ๋ถ„์„๋กœ๋˜ ๋‹น์ฒจ ๋ฒˆํ˜ธ์—์„œ ํ™€์ˆ˜์™€ ์ง์ˆ˜์˜ ์ถœํ˜„ ๋น„์œจ์„ ๋ถ„์„ํ•œ๋‹ค.def odd_eve..

[Python][pandas] DataFrame ํ–‰๋ณ„ ์ˆœํšŒ(iterate) ๋ฐฉ๋ฒ• ์ •๋ฆฌ

Pandas์˜ DataFrame์—์„œ ํ–‰์„ ์ˆœํšŒ(iterate)ํ•ด์•ผ ํ•˜๋Š” ๊ฒฝ์šฐ๊ฐ€ ์ข…์ข… ์žˆ๋‹ค. ํ•˜์ง€๋งŒ Pandas๋Š” ๋ฒกํ„ฐํ™” ์—ฐ์‚ฐ์ด ํ›จ์”ฌ ๋น ๋ฅด๊ธฐ ๋•Œ๋ฌธ์—, ๊ฐ€๋Šฅํ•˜๋ฉด apply() ๊ฐ™์€ ๋ฉ”์„œ๋“œ๋ฅผ ํ™œ์šฉํ•˜๋Š” ๊ฒƒ์ด ์ข‹๋‹ค. ๊ทธ๋ ‡๋‹ค๋ฉด, ์–ธ์ œ ํ–‰์„ ์ˆœํšŒํ•ด์•ผ ํ• ๊นŒ? ๊ทธ๋ฆฌ๊ณ  ์–ด๋–ค ๋ฐฉ๋ฒ•์ด ๊ฐ€์žฅ ํšจ์œจ์ ์ผ๊นŒ? ์ด๋ฒˆ ๊ธ€์—์„œ๋Š” ๋‹ค์–‘ํ•œ ๋ฐฉ๋ฒ•์„ ์ •๋ฆฌํ•ด๋ณธ๋‹ค.1. iterrows() ์‚ฌ์šฉํ•˜๊ธฐiterrows()๋Š” ๊ฐ€์žฅ ๋งŽ์ด ์‚ฌ์šฉ๋˜๋Š” ๋ฐฉ๋ฒ• ์ค‘ ํ•˜๋‚˜์ง€๋งŒ, ์„ฑ๋Šฅ์ด ๋Š๋ฆฌ๋‹ค๋Š” ๋‹จ์ ์ด ์žˆ๋‹ค. ๊ฐ ํ–‰์„ index, Series ํ˜•ํƒœ๋กœ ๋ฐ˜ํ™˜ํ•œ๋‹ค.import pandas as pd# ์˜ˆ์ œ ๋ฐ์ดํ„ฐdata = {'A': [1, 2, 3], 'B': [4, 5, 6]}df = pd.DataFrame(data)# iterrows ์‚ฌ์šฉfor index, row in d..

[Python][AI] RAG (Retrieval-Augmented Generation)๋ž€ ๋ฌด์—‡์ธ๊ฐ€?

์ตœ๊ทผ ์ธ๊ณต์ง€๋Šฅ(AI) ๋ชจ๋ธ์ด ๋ฐœ์ „ํ•˜๋ฉด์„œ ๋Œ€ํ™”ํ˜• AI, ์ฑ—๋ด‡, ๋ฌธ์„œ ์š”์•ฝ, ์ฝ”๋“œ ์ƒ์„ฑ ๋“ฑ ๋‹ค์–‘ํ•œ ๋ถ„์•ผ์—์„œ ์ž์—ฐ์–ด ์ฒ˜๋ฆฌ(NLP) ๊ธฐ์ˆ ์ด ํ™œ์šฉ๋˜๊ณ  ์žˆ๋‹ค. ํŠนํžˆ, ๋Œ€ํ˜• ์–ธ์–ด ๋ชจ๋ธ(LLM, Large Language Model)์˜ ์„ฑ๋Šฅ์ด ๊ธ‰๊ฒฉํžˆ ํ–ฅ์ƒ๋˜๋ฉด์„œ ์ƒ์„ฑํ˜• AI(Generative AI)์˜ ๊ฐ€๋Šฅ์„ฑ์ด ๋”์šฑ ํ™•๋Œ€๋˜๊ณ  ์žˆ๋‹ค. ํ•˜์ง€๋งŒ ์ด๋Ÿฌํ•œ ๋ชจ๋ธ์—๋„ ๋ช‡ ๊ฐ€์ง€ ํ•œ๊ณ„๊ฐ€ ์žˆ๋‹ค.์‚ฌ์ „ ํ•™์Šต ๋ฐ์ดํ„ฐ์— ์˜์กด์ ์ž„ – LLM์€ ํ•™์Šต๋œ ๋ฐ์ดํ„ฐ ๋‚ด์—์„œ๋งŒ ์ •๋ณด๋ฅผ ์ƒ์„ฑํ•  ์ˆ˜ ์žˆ์Œ. ์ตœ์‹  ์ •๋ณด๋‚˜ ์™ธ๋ถ€ ๋ฌธ์„œ๋ฅผ ์ฆ‰๊ฐ ๋ฐ˜์˜ํ•˜๋Š” ๊ฒƒ์ด ์–ด๋ ค์›€ํ™˜๊ฐ(Hallucination) ๋ฌธ์ œ – ์กด์žฌํ•˜์ง€ ์•Š๋Š” ์ •๋ณด๋ฅผ ์ƒ์„ฑํ•  ๊ฐ€๋Šฅ์„ฑ์ด ์žˆ์Œ์ •ํ™•์„ฑ ๋ฐ ์‹ ๋ขฐ์„ฑ ๋ถ€์กฑ – ๋ชจ๋ธ์ด ์‚ฌ์‹ค๊ณผ ๋‹ค๋ฅธ ๋‚ด์šฉ์„ ํฌํ•จํ•  ์ˆ˜ ์žˆ์Œ์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ๋“ฑ์žฅํ•œ ๊ธฐ์ˆ ์ด ๋ฐ”๋กœ RAG(Re..

[Python][pandas] Parquet ํŒŒ์ผ ํฌ๋งท: ๊ณ ์† ๋ฐ์ดํ„ฐ ์ฒ˜๋ฆฌ์— ์ตœ์ ํ™”๋œ ์ปฌ๋Ÿผ ์ €์žฅ ๋ฐฉ์‹

๋ฐ์ดํ„ฐ ๋ถ„์„๊ณผ ๋จธ์‹ ๋Ÿฌ๋‹์„ ํ•˜๋‹ค ๋ณด๋ฉด CSV, JSON, Excel ๋“ฑ์˜ ํŒŒ์ผ ํฌ๋งท์„ ์ž์ฃผ ์‚ฌ์šฉํ•˜๊ฒŒ ๋œ๋‹ค. ํ•˜์ง€๋งŒ ๋Œ€์šฉ๋Ÿ‰ ๋ฐ์ดํ„ฐ๋ฅผ ๋‹ค๋ฃฐ ๋•Œ๋Š” ์†๋„์™€ ์ €์žฅ ํšจ์œจ์„ฑ์ด ์ค‘์š”ํ•œ๋ฐ, ์ด๋Ÿด ๋•Œ Parquet ํฌ๋งท์ด ๊ฐ•๋ ฅํ•œ ๋Œ€์•ˆ์ด ๋  ์ˆ˜ ์žˆ๋‹ค.1. Parquet๋ž€?Apache Parquet๋Š” ์ปฌ๋Ÿผ ๊ธฐ๋ฐ˜ ์ €์žฅ ๋ฐฉ์‹(columnar storage format)์„ ์‚ฌ์šฉํ•˜๋Š” ์˜คํ”ˆ์†Œ์Šค ๋ฐ์ดํ„ฐ ํฌ๋งท์ž„. Hadoop ์ƒํƒœ๊ณ„์—์„œ ๊ฐœ๋ฐœ๋˜์—ˆ์œผ๋ฉฐ, ๋Œ€์šฉ๋Ÿ‰ ๋ฐ์ดํ„ฐ ์ฒ˜๋ฆฌ์™€ ๋ถ„์„ ์„ฑ๋Šฅ์„ ๊ทน๋Œ€ํ™”ํ•˜๋Š” ๋ฐ ์ตœ์ ํ™”๋จ.ํŠน์ง•์ปฌ๋Ÿผ ๊ธฐ๋ฐ˜ ์ €์žฅ(Columnar Storage)CSV๋‚˜ JSON ๊ฐ™์€ ํฌ๋งท์€ ๋ฐ์ดํ„ฐ๋ฅผ ํ–‰(Row) ๋‹จ์œ„๋กœ ์ €์žฅํ•˜์ง€๋งŒ, Parquet์€ ์ปฌ๋Ÿผ(Column) ๋‹จ์œ„๋กœ ์ €์žฅํ•จํŠน์ • ์ปฌ๋Ÿผ๋งŒ ์ฝ์–ด๋„ ๋˜๋ฏ€๋กœ, ๋ถ„์„ ์†๋„๊ฐ€ ํ–ฅ์ƒ๋จ์••์ถ• ๋ฐ ์ธ์ฝ”๋”ฉ(Co..

[Python][AI] ํ•œ๊ตญ ๋กœ๋˜ ๋ถ„์„: ๋‹น์ฒจ ๋ฒˆํ˜ธ ๋ถ„์„๊ณผ ํŒจํ„ด ์ฐพ๊ธฐ(EDA)

2025.02.18 - [๊ฐœ๋ฐœ Code/์ธ๊ณต์ง€๋Šฅ A.I.] - [Python][AI] ํ•œ๊ตญ ๋กœ๋˜ ๋ถ„์„: ๋‹น์ฒจ ํ™•๋ฅ ๊ณผ ์˜ˆ์ธก์˜ ๋ถˆ๊ฐ€๋Šฅ์„ฑ [Python][AI] ํ•œ๊ตญ ๋กœ๋˜ ๋ถ„์„: ๋‹น์ฒจ ํ™•๋ฅ ๊ณผ ์˜ˆ์ธก์˜ ๋ถˆ๊ฐ€๋Šฅ์„ฑ1. ํ•œ๊ตญ ๋กœ๋˜ ๊ฐœ๋…๋กœ๋˜๋Š” 1๋ถ€ํ„ฐ 45๊นŒ์ง€์˜ ์ˆซ์ž ์ค‘ 6๊ฐœ๋ฅผ ์„ ํƒํ•˜๋Š” ๋ฐฉ์‹์˜ ๋ณต๊ถŒ์ด๋‹ค. ๊ตฌ๋งค์ž๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™์€ ๋ฐฉ๋ฒ•์œผ๋กœ ๋ฒˆํ˜ธ๋ฅผ ์„ ํƒํ•  ์ˆ˜ ์žˆ๋‹ค.์ž๋™ ์„ ํƒ: 45๊ฐœ์˜ ๋ฒˆํ˜ธ ์ค‘ 6๊ฐœ ๋ฒˆํ˜ธ๋ฅผ ๋ฌด์ž‘์œ„๋กœ ๋ถ€์—ฌ๋ฐ›5hr1rnp.tistory.com ๋ณธ ๊ธ€์—์„œ๋Š” ๋กœ๋˜ ๋‹น์ฒจ ๋ฐ์ดํ„ฐ์— ๋Œ€ํ•œ ํƒ์ƒ‰์  ๋ฐ์ดํ„ฐ ๋ถ„์„(EDA)์„ ์ง„ํ–‰ํ•˜๋ฉฐ, ๋‹ค์–‘ํ•œ ํ†ต๊ณ„์  ํŠน์ง•์„ ์‚ดํŽด๋ณด๊ฒ ๋‹ค.1. ๋ฐ์ดํ„ฐ ์ „์ฒ˜๋ฆฌ๋กœ๋˜ ๋ฐ์ดํ„ฐ๋Š” ๋™ํ–‰๋ณต๊ถŒ ์‚ฌ์ดํŠธ์—์„œ ์ œ๊ณตํ•˜๋Š” ์—‘์…€ ํŒŒ์ผ์„ ๊ฐ๊ฐ lotto-1.xls(1~600ํšŒ), lotto-2.xls(601~1,159ํšŒ)๋กœ ์ €์žฅํ•จ..

[Python][AI] ํ•œ๊ตญ ๋กœ๋˜ ๋ถ„์„: ๋‹น์ฒจ ํ™•๋ฅ ๊ณผ ์˜ˆ์ธก์˜ ๋ถˆ๊ฐ€๋Šฅ์„ฑ

1. ํ•œ๊ตญ ๋กœ๋˜ ๊ฐœ๋…๋กœ๋˜๋Š” 1๋ถ€ํ„ฐ 45๊นŒ์ง€์˜ ์ˆซ์ž ์ค‘ 6๊ฐœ๋ฅผ ์„ ํƒํ•˜๋Š” ๋ฐฉ์‹์˜ ๋ณต๊ถŒ์ด๋‹ค. ๊ตฌ๋งค์ž๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™์€ ๋ฐฉ๋ฒ•์œผ๋กœ ๋ฒˆํ˜ธ๋ฅผ ์„ ํƒํ•  ์ˆ˜ ์žˆ๋‹ค.์ž๋™ ์„ ํƒ: 45๊ฐœ์˜ ๋ฒˆํ˜ธ ์ค‘ 6๊ฐœ ๋ฒˆํ˜ธ๋ฅผ ๋ฌด์ž‘์œ„๋กœ ๋ถ€์—ฌ๋ฐ›์Œ๋ฐ˜์ž๋™ ์„ ํƒ: ์›ํ•˜๋Š” ๋ฒˆํ˜ธ ์ผ๋ถ€(1~5๊ฐœ)๋ฅผ ์ง์ ‘ ์„ ํƒํ•˜๊ณ , ๋‚˜๋จธ์ง€๋Š” ๋ฌด์ž‘์œ„๋กœ ์ฑ„์›€์ˆ˜๋™ ์„ ํƒ: 6๊ฐœ ๋ฒˆํ˜ธ๋ฅผ ์ „๋ถ€ ์ง์ ‘ ์„ ํƒ์ถ”์ฒจ์€ ๋งค์ฃผ ํ† ์š”์ผ ์ €๋…์— ์ง„ํ–‰๋˜๋ฉฐ, 6๊ฐœ์˜ ๋‹น์ฒจ๋ฒˆํ˜ธ์™€ 1๊ฐœ์˜ ๋ณด๋„ˆ์Šค๋ฒˆํ˜ธ๊ฐ€ ๋ฌด์ž‘์œ„๋กœ ๊ฒฐ์ •๋œ๋‹ค. ๋ณด๋„ˆ์Šค๋ฒˆํ˜ธ๋Š” 2๋“ฑ ๋‹น์ฒจ์ž๋ฅผ ํŒ๋ณ„ํ•˜๋Š” ๋ฐ ์‚ฌ์šฉ๋œ๋‹ค.2. ๋‹น์ฒจ ๋“ฑ๊ธ‰๊ณผ ํ™•๋ฅ ๋กœ๋˜์˜ ๋‹น์ฒจ์€ ๋ฒˆํ˜ธ ์ผ์น˜ ๊ฐœ์ˆ˜์— ๋”ฐ๋ผ 5๊ฐœ์˜ ๋“ฑ๊ธ‰์œผ๋กœ ๋‚˜๋‰จ. ๊ฐ ๋“ฑ๊ธ‰๋ณ„ ๋‹น์ฒจ ํ™•๋ฅ ๊ณผ ๋‹น์ฒจ๊ธˆ ๋ฐฐ๋ถ„ ๊ตฌ์กฐ๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™์Œ. ๋“ฑ์œ„๋‹น์ฒจ ์กฐ๊ฑด๋‹น์ฒจ ํ™•๋ฅ ๋‹น์ฒจ๊ธˆ ๋ฐฐ๋ถ„1๋“ฑ6๊ฐœ ๋ฒˆํ˜ธ ์ผ์น˜1 / 8,145,060์ด ๋‹น์ฒจ๊ธˆ ์ค‘ 4๋“ฑ, 5๋“ฑ ์ œ์™ธ ๊ธˆ..

[Python][AI] OpenCV YuNet์„ ํ™œ์šฉํ•œ ๋™์˜์ƒ ์–ผ๊ตด ๋ชจ์ž์ดํฌ ์ฒ˜๋ฆฌ

2025.02.17 - [๊ฐœ๋ฐœ Code/์ธ๊ณต์ง€๋Šฅ A.I.] - [Python][AI] OpenCV: ์ปดํ“จํ„ฐ ๋น„์ „ ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ ์†Œ๊ฐœ2025.02.17 - [๊ฐœ๋ฐœ Code/์ธ๊ณต์ง€๋Šฅ A.I.] - [Python][AI] OpenCV YuNet์„ ํ™œ์šฉํ•œ ์–ผ๊ตด ํƒ์ง€2025.02.17 - [๊ฐœ๋ฐœ Code/์ธ๊ณต์ง€๋Šฅ A.I.] - [Python][AI] OpenCV YuNet์„ ํ™œ์šฉํ•œ ์–ผ๊ตด ๋ชจ์ž์ดํฌ ์ฒ˜๋ฆฌ 1. ๋™์˜์ƒ ์–ผ๊ตด ๋ชจ์ž์ดํฌ ๊ฐœ์š”์ด์ „ ๊ธ€์—์„œ๋Š” ์ •์ ์ธ ์ด๋ฏธ์ง€ ๋˜๋Š” ๋””๋ ‰ํ† ๋ฆฌ์—์„œ ์–ผ๊ตด์„ ํƒ์ง€ํ•˜๊ณ  ๋ชจ์ž์ดํฌ๋ฅผ ์ ์šฉํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ๋‹ค๋ฃจ์—ˆ๋‹ค. ์ด๋ฒˆ ๊ธ€์—์„œ๋Š” ๋™์˜์ƒ์—์„œ ์–ผ๊ตด์„ ์ž๋™์œผ๋กœ ํƒ์ง€ํ•˜๊ณ  ๋ชจ์ž์ดํฌ๋ฅผ ์ ์šฉํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ๋‹ค๋ฃฌ๋‹ค.OpenCV์˜ YuNet ์–ผ๊ตด ํƒ์ง€ ๋ชจ๋ธ์„ ํ™œ์šฉํ•˜์—ฌ ์‹ค์‹œ๊ฐ„์œผ๋กœ ์–ผ๊ตด์„ ๊ฐ์ง€ํ•˜๊ณ , ํ•ด๋‹น ์˜์—ญ์„ ๋ชจ์ž์ดํฌ ์ฒ˜๋ฆฌ..

[Python][AI] OpenCV YuNet์„ ํ™œ์šฉํ•œ ์–ผ๊ตด ๋ชจ์ž์ดํฌ ์ฒ˜๋ฆฌ

2025.02.17 - [๊ฐœ๋ฐœ Code/์ธ๊ณต์ง€๋Šฅ A.I.] - [Python][AI] OpenCV: ์ปดํ“จํ„ฐ ๋น„์ „ ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ ์†Œ๊ฐœ2025.02.17 - [๊ฐœ๋ฐœ Code/์ธ๊ณต์ง€๋Šฅ A.I.] - [Python][AI] OpenCV YuNet์„ ํ™œ์šฉํ•œ ์–ผ๊ตด ํƒ์ง€ 1. ์–ผ๊ตด ๋ชจ์ž์ดํฌ ์ฒ˜๋ฆฌ ๊ฐœ์š”์ด๋ฒˆ ๊ธ€์—์„œ๋Š” OpenCV์˜ YuNet ๋ชจ๋ธ์„ ์ด์šฉํ•˜์—ฌ ์ด๋ฏธ์ง€์—์„œ ์–ผ๊ตด์„ ์ž๋™์œผ๋กœ ํƒ์ง€ํ•˜๊ณ , ํ•ด๋‹น ์˜์—ญ์— ๋ชจ์ž์ดํฌ๋ฅผ ์ ์šฉํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ๋‹ค๋ฃฐ ๊ฒƒ์ด๋‹ค. 2. ์‹คํ–‰ ํ™˜๊ฒฝ ์ค€๋น„OpenCV ์„ค์น˜pip install opencv-python 3. YuNet ์–ผ๊ตด ํƒ์ง€ ๋ชจ๋ธ ๋‹ค์šด๋กœ๋“œ import osimport requests# YuNet ๋ชจ๋ธ ํŒŒ์ผ ์„ค์ •model_filename = "face_detection_yunet_2023mar.o..

[Python][AI] OpenCV YuNet์„ ํ™œ์šฉํ•œ ์–ผ๊ตด ํƒ์ง€

2025.02.17 - [๊ฐœ๋ฐœ Code/์ธ๊ณต์ง€๋Šฅ A.I.] - [Python][AI] OpenCV: ์ปดํ“จํ„ฐ ๋น„์ „ ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ ์†Œ๊ฐœ1. YuNet์„ ์ด์šฉํ•œ ์–ผ๊ตด ํƒ์ง€ ๊ฐœ์š”OpenCV๋Š” ๊ฐ•๋ ฅํ•œ ์ด๋ฏธ์ง€ ์ฒ˜๋ฆฌ ๊ธฐ๋Šฅ์„ ์ œ๊ณตํ•˜๋ฉฐ, cv2.FaceDetectorYN์„ ์ด์šฉํ•˜๋ฉด ๋”ฅ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜ ์–ผ๊ตด ํƒ์ง€๋ฅผ ๊ฐ„๋‹จํ•˜๊ฒŒ ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ๋‹ค. ์ด๋ฒˆ ๊ธ€์—์„œ๋Š” OpenCV์˜ YuNet ๋ชจ๋ธ์„ ์‚ฌ์šฉํ•˜์—ฌ ์ด๋ฏธ์ง€์—์„œ ์–ผ๊ตด์„ ํƒ์ง€ํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ๋‹ค๋ฃฌ๋‹ค.2. ์‹คํ–‰ ํ™˜๊ฒฝ ์ค€๋น„(1) OpenCV ์„ค์น˜YuNet์„ ์‚ฌ์šฉํ•˜๋ ค๋ฉด opencv-python ํŒจํ‚ค์ง€๋งŒ ์„ค์น˜ํ•˜๋ฉด ๋จ. Jupyter Notebook์—์„œ ๋‹ค์Œ ๋ช…๋ น์–ด๋ฅผ ์‹คํ–‰ํ•˜์—ฌ ์„ค์น˜ํ•  ์ˆ˜ ์žˆ์Œ.pip install opencv-python ์„ค์น˜๊ฐ€ ์™„๋ฃŒ๋˜๋ฉด, OpenCV ๋ฒ„์ „์„ ํ™•์ธํ•˜์—ฌ ์ •์ƒ์ ์œผ๋กœ ์„ค์น˜๋˜์—ˆ๋Š”..

[Python][AI] OpenCV: ์ปดํ“จํ„ฐ ๋น„์ „ ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ ์†Œ๊ฐœ

1. OpenCV๋ž€?OpenCV(Open Source Computer Vision)๋Š” ์‹ค์‹œ๊ฐ„ ์ด๋ฏธ์ง€ ์ฒ˜๋ฆฌ ๋ฐ ์ปดํ“จํ„ฐ ๋น„์ „ ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜์„ ์œ„ํ•œ ์˜คํ”ˆ์†Œ์Šค ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ. ์ธํ…”์—์„œ ๊ฐœ๋ฐœํ•˜๊ณ  2000๋…„ 6์›”์— ๋ฐœํ‘œ๋˜์—ˆ์œผ๋ฉฐ, ํ˜„์žฌ๋Š” ์ธํ…”์ด ์†์„ ๋—€ ์ƒํƒœ๋‹ค. Python, C++, Java ๋“ฑ์„ ์ง€์›ํ•˜๋ฉฐ, ๋‹ค์–‘ํ•œ ์šด์˜์ฒด์ œ(Windows, Linux, macOS)์—์„œ ์‹คํ–‰ ๊ฐ€๋Šฅํ•˜๋‹ค.2. OpenCV์˜ ์ฃผ์š” ๊ธฐ๋ŠฅOpenCV๋Š” ์ปดํ“จํ„ฐ ๋น„์ „ ๋ฐ ์ด๋ฏธ์ง€ ์ฒ˜๋ฆฌ์™€ ๊ด€๋ จ๋œ ๋‹ค์–‘ํ•œ ๊ธฐ๋Šฅ์„ ์ œ๊ณตํ•จ.(1) ์ด๋ฏธ์ง€ ๋ฐ ๋™์˜์ƒ ์ฒ˜๋ฆฌ์ด๋ฏธ์ง€ ์ฝ๊ธฐ, ์ €์žฅ, ๋ณ€ํ™˜๋™์˜์ƒ ์žฌ์ƒ ๋ฐ ํ”„๋ ˆ์ž„ ์ฒ˜๋ฆฌ์ƒ‰๊ณต๊ฐ„ ๋ณ€ํ™˜ (RGB ↔ Grayscale, HSV ๋“ฑ)(2) ํ•„ํ„ฐ ๋ฐ ๋ณ€ํ™˜๋ธ”๋Ÿฌ๋ง ๋ฐ ์ƒคํ”„๋‹์—ฃ์ง€ ๊ฒ€์ถœ (Canny Edge Detection)๊ธฐํ•˜ํ•™์  ๋ณ€ํ™˜ (ํšŒ์ „..

[Python][AI] ์„ ํ˜• vs ๋น„์„ ํ˜•, ๋‹จ์กฐ vs ๋น„๋‹จ์กฐ ๋ฐ์ดํ„ฐ์…‹ ์ •๋ฆฌ

๋ฐ์ดํ„ฐ ๋ถ„์„๊ณผ ๋จธ์‹ ๋Ÿฌ๋‹์—์„œ ๋ฐ์ดํ„ฐ๋ฅผ ์ดํ•ดํ•˜๋Š” ๊ฒƒ์€ ๋งค์šฐ ์ค‘์š”ํ•˜๋‹ค. ํŠนํžˆ ๋ฐ์ดํ„ฐ์˜ ๊ตฌ์กฐ๋ฅผ ํŒŒ์•…ํ•˜๋Š” ๊ฒƒ์€ ๋ชจ๋ธ ์„ ํƒ๊ณผ ํ•ด์„์— ํฐ ์˜ํ–ฅ์„ ๋ฏธ์นœ๋‹ค. ๋ฐ์ดํ„ฐ๋Š” ํฌ๊ฒŒ ์„ ํ˜•(linear)๊ณผ ๋น„์„ ํ˜•(non-linear), ๋‹จ์กฐ(monotonic)์™€ ๋น„๋‹จ์กฐ(non-monotonic) ํ˜•ํƒœ๋กœ ๊ตฌ๋ถ„ํ•  ์ˆ˜ ์žˆ๋‹ค.1. ์„ ํ˜•(Linear) ๋ฐ์ดํ„ฐ vs ๋น„์„ ํ˜•(Non-Linear) ๋ฐ์ดํ„ฐ(1) ์„ ํ˜• ๋ฐ์ดํ„ฐ (Linear Data)์„ ํ˜• ๋ฐ์ดํ„ฐ๋Š” ๋ณ€์ˆ˜ ๊ฐ„์˜ ๊ด€๊ณ„๊ฐ€ ์ง์„ ์œผ๋กœ ํ‘œํ˜„๋  ์ˆ˜ ์žˆ๋Š” ๋ฐ์ดํ„ฐ๋ฅผ ์˜๋ฏธํ•จ. ์ฆ‰, ํ•œ ๋ณ€์ˆ˜๊ฐ€ ์ฆ๊ฐ€ํ•  ๋•Œ ๋‹ค๋ฅธ ๋ณ€์ˆ˜๋„ ์ผ์ •ํ•œ ๋น„์œจ๋กœ ์ฆ๊ฐ€ํ•˜๊ฑฐ๋‚˜ ๊ฐ์†Œํ•˜๋Š” ํŒจํ„ด์„ ๋ณด์ž„.ํŠน์ง•๋ฐ์ดํ„ฐ๊ฐ€ ์ง์„  ๊ด€๊ณ„๋ฅผ ๋”ฐ๋ฆ„์„ ํ˜• ํšŒ๊ท€(Linear Regression) ๋ชจ๋ธ๋กœ ์‰ฝ๊ฒŒ ์„ค๋ช… ๊ฐ€๋Šฅ์˜ˆ์ธก์ด ์ง๊ด€์ ์ด๋ฉฐ ๊ณ„์‚ฐ ๋น„์šฉ์ด ๋‚ฎ์Œ์˜ˆ์ œํ‚ค์™€ ๋ชธ๋ฌด๊ฒŒ๊ฐ€..

[WebDev][Babel] Babel ์†Œ๊ฐœ: ์ตœ์‹  ์ž๋ฐ”์Šคํฌ๋ฆฝํŠธ๋ฅผ ๋ชจ๋“  ๋ธŒ๋ผ์šฐ์ €์—์„œ ์‹คํ–‰ํ•˜๊ธฐ

1. Babel์ด๋ž€?Babel์€ ์ž๋ฐ”์Šคํฌ๋ฆฝํŠธ ์ปดํŒŒ์ผ๋Ÿฌ(JavaScript Compiler) ๋กœ, ์ตœ์‹  ECMAScript(ES6+) ์ฝ”๋“œ๊ฐ€ ๊ตฌํ˜• ๋ธŒ๋ผ์šฐ์ €์—์„œ๋„ ์ •์ƒ์ ์œผ๋กœ ์‹คํ–‰๋˜๋„๋ก ๋ณ€ํ™˜ํ•ด์ฃผ๋Š” ๋„๊ตฌ๋‹ค.2. Babel์ด ํ•„์š”ํ•œ ์ด์œ ์ž๋ฐ”์Šคํฌ๋ฆฝํŠธ๋Š” ๊พธ์ค€ํžˆ ๋ฐœ์ „ํ•˜๋ฉฐ ์ƒˆ๋กœ์šด ๋ฌธ๋ฒ•(์˜ˆ: let, const, async/await, ํ™”์‚ดํ‘œ ํ•จ์ˆ˜ ๋“ฑ)์ด ์ถ”๊ฐ€๋จ. ํ•˜์ง€๋งŒ ๊ตฌํ˜• ๋ธŒ๋ผ์šฐ์ €๋Š” ์ตœ์‹  ๋ฌธ๋ฒ•์„ ์ง€์›ํ•˜์ง€ ์•Š์Œ. ์ด ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด Babel์ด ํ•„์š”ํ•จ.Babel์˜ ์ฃผ์š” ์—ญํ• :โœ… ์ตœ์‹  ์ž๋ฐ”์Šคํฌ๋ฆฝํŠธ ๋ฌธ๋ฒ•์„ ๊ตฌํ˜• ๋ธŒ๋ผ์šฐ์ €์—์„œ๋„ ๋™์ž‘ ๊ฐ€๋Šฅํ•˜๋„๋ก ๋ณ€ํ™˜โœ… JSX(React์—์„œ ์‚ฌ์šฉ) ๋ฐ TypeScript ์ฝ”๋“œ๋„ ๋ณ€ํ™˜ ๊ฐ€๋Šฅโœ… ์ฝ”๋“œ ์ตœ์ ํ™” ๋ฐ ํ”Œ๋Ÿฌ๊ทธ์ธ ํ™•์žฅ์„ ํ†ตํ•œ ๊ฐœ๋ฐœ ํ™˜๊ฒฝ ๊ฐœ์„ 3. Babel์˜ ํ•ต์‹ฌ ๊ฐœ๋…(1) ํŠธ๋žœ์ŠคํŒŒ์ผ๋ง(T..

[WebDev][Webpack] Webpack ์†Œ๊ฐœ: ํ˜„๋Œ€์ ์ธ ์ž๋ฐ”์Šคํฌ๋ฆฝํŠธ ๋ฒˆ๋“ค๋Ÿฌ

1. Webpack์ด๋ž€?Webpack์€ ์ž๋ฐ”์Šคํฌ๋ฆฝํŠธ ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜์˜ ๋ชจ๋“ˆ ๋ฒˆ๋“ค๋Ÿฌ(module bundler)๋‹ค. ์›น ๊ฐœ๋ฐœ์—์„œ ์—ฌ๋Ÿฌ ๊ฐœ์˜ ์ž๋ฐ”์Šคํฌ๋ฆฝํŠธ, CSS, ์ด๋ฏธ์ง€ ๋“ฑ์„ ํ•˜๋‚˜์˜ ๋ฒˆ๋“ค ํŒŒ์ผ๋กœ ๋ฌถ์–ด์ฃผ๋Š” ์—ญํ• ์„ ํ•œ๋‹ค.2. Webpack์ด ํ•„์š”ํ•œ ์ด์œ ์›น ๊ฐœ๋ฐœ์ด ์ ์  ๋ณต์žกํ•ด์ง€๋ฉด์„œ ๋‹ค์–‘ํ•œ ํŒŒ์ผ๊ณผ ๋ชจ๋“ˆ์„ ํšจ์œจ์ ์œผ๋กœ ๊ด€๋ฆฌํ•ด์•ผ ํ•˜๋Š” ํ•„์š”์„ฑ์ด ์ƒ๊น€. Webpack์„ ์‚ฌ์šฉํ•˜๋ฉด ๋‹ค์Œ๊ณผ ๊ฐ™์€ ์žฅ์ ์ด ์žˆ์Œ.๋ชจ๋“ˆํ™” ์ง€์›: ES6+ ๋ชจ๋“ˆ, CommonJS, AMD ๋“ฑ์˜ ๋‹ค์–‘ํ•œ ๋ชจ๋“ˆ ์‹œ์Šคํ…œ์„ ์ง€์›ํ•จํŒŒ์ผ ํฌ๊ธฐ ์ตœ์ ํ™”: ์ฝ”๋“œ ์••์ถ•, ํŠธ๋ฆฌ ์‰์ดํ‚น(Tree Shaking) ๋“ฑ์„ ํ†ตํ•ด ์ตœ์ ํ™” ๊ฐ€๋Šฅ๊ฐœ๋ฐœ ์ƒ์‚ฐ์„ฑ ํ–ฅ์ƒ: HMR(Hot Module Replacement) ๊ธฐ๋Šฅ์œผ๋กœ ์ฝ”๋“œ ๋ณ€๊ฒฝ ์‹œ ๋น ๋ฅด๊ฒŒ ๋ฐ˜์˜๋จ์ž์› ๊ด€๋ฆฌ: CSS, ์ด๋ฏธ์ง€, ํฐํŠธ ๋“ฑ๋„ ๋ชจ..

[Python][AI] AI ๋ชจ๋ธ ์„ฑ๋Šฅ ์ง€ํ‘œ(Metrics) ์ •๋ฆฌ

AI ๋ชจ๋ธ์˜ ์„ฑ๋Šฅ์„ ํ‰๊ฐ€ํ•˜๊ธฐ ์œ„ํ•ด ๋‹ค์–‘ํ•œ ์„ฑ๋Šฅ ์ง€ํ‘œ(metrics)๊ฐ€ ์‚ฌ์šฉ๋œ๋‹ค. ๋ชจ๋ธ์ด ์–ผ๋งˆ๋‚˜ ์ •ํ™•ํ•˜๊ฒŒ ์ž‘๋™ํ•˜๋Š”์ง€, ์˜ˆ์ธก์ด ์–ผ๋งˆ๋‚˜ ์‹ ๋ขฐํ•  ์ˆ˜ ์žˆ๋Š”์ง€๋ฅผ ํ‰๊ฐ€ํ•˜๋Š” ๋ฐ ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•˜๋‹ค. ์ด๋ฒˆ ๊ธ€์—์„œ ๋Œ€ํ‘œ์ ์ธ ์„ฑ๋Šฅ ์ง€ํ‘œ๋“ค์„ ์†Œ๊ฐœํ•˜๊ฒ ๋‹ค.1. ํšŒ๊ท€(Regression) ๋ชจ๋ธ ์„ฑ๋Šฅ ์ง€ํ‘œํšŒ๊ท€ ๋ชจ๋ธ์€ ์—ฐ์†์ ์ธ ์ˆซ์ž ๊ฐ’์„ ์˜ˆ์ธกํ•˜๋Š” ๋ชจ๋ธ์ด๋ฉฐ, ์ฃผ๋กœ ํ‰๊ท  ์ œ๊ณฑ ์˜ค์ฐจ(Mean Squared Error)๋‚˜ ํ‰๊ท  ์ ˆ๋Œ€ ์˜ค์ฐจ(Mean Absolute Error) ๋“ฑ์˜ ์ง€ํ‘œ๋ฅผ ์‚ฌ์šฉํ•จ.(1) MSE (Mean Squared Error, ํ‰๊ท  ์ œ๊ณฑ ์˜ค์ฐจ)MSE๋Š” ์‹ค์ œ ๊ฐ’๊ณผ ์˜ˆ์ธก ๊ฐ’์˜ ์ฐจ์ด๋ฅผ ์ œ๊ณฑํ•œ ํ›„ ํ‰๊ท ์„ ๊ตฌํ•œ ๊ฐ’์ž„. ๊ฐ’์ด ์ž‘์„์ˆ˜๋ก ๋ชจ๋ธ์˜ ์˜ˆ์ธก์ด ์‹ค์ œ ๊ฐ’๊ณผ ๊ฐ€๊นŒ์›€์„ ์˜๋ฏธํ•จ.์žฅ์ : ์˜ค์ฐจ๋ฅผ ์ œ๊ณฑํ•˜์—ฌ ํฐ ์˜ค์ฐจ๋ฅผ ๊ฐ•์กฐํ•จ๋‹จ์ : ์ œ๊ณฑ์ด ์ ์šฉ๋˜..

[AI][CatBoost] CatBoost๋กœ Wine Quality ์˜ˆ์ธกํ•˜๊ธฐ

2025.01.23 - [๊ฐœ๋ฐœ Code/์ธ๊ณต์ง€๋Šฅ A.I.] - [Python][AI] ํƒ์ƒ‰์  ๋ฐ์ดํ„ฐ ๋ถ„์„(EDA) - ์™€์ธ ํ’ˆ์งˆ ๋ฐ์ดํ„ฐ์…‹ (Wine Quality Dataset) - 12025.01.24 - [๊ฐœ๋ฐœ Code/์ธ๊ณต์ง€๋Šฅ A.I.] - [Python][AI] ํƒ์ƒ‰์  ๋ฐ์ดํ„ฐ ๋ถ„์„(EDA) - ์™€์ธ ํ’ˆ์งˆ ๋ฐ์ดํ„ฐ์…‹ (Wine Quality Dataset) - 22025.02.04 - [๊ฐœ๋ฐœ Code/์ธ๊ณต์ง€๋Šฅ A.I.] - [Python][AI] ํƒ์ƒ‰์  ๋ฐ์ดํ„ฐ ๋ถ„์„(EDA) - ์™€์ธ ํ’ˆ์งˆ ๋ฐ์ดํ„ฐ์…‹ (Wine Quality Dataset) - 32025.02.04 - [๊ฐœ๋ฐœ Code/์ธ๊ณต์ง€๋Šฅ A.I.] - [Python][AI] ํƒ์ƒ‰์  ๋ฐ์ดํ„ฐ ๋ถ„์„(EDA) - ์™€์ธ ํ’ˆ์งˆ ๋ฐ์ดํ„ฐ์…‹ (Wine Qualit..

[Python][AI] CatBoost: ๊ฐ•๋ ฅํ•œ ๊ทธ๋ž˜๋””์–ธํŠธ ๋ถ€์ŠคํŒ… ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ

1. CatBoost๋ž€?CatBoost๋Š” Yandex์—์„œ ๊ฐœ๋ฐœํ•œ ๊ทธ๋ž˜๋””์–ธํŠธ ๋ถ€์ŠคํŒ…(Gradient Boosting) ๊ธฐ๋ฐ˜ ๋จธ์‹ ๋Ÿฌ๋‹ ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ๋กœ, ์˜์‚ฌ๊ฒฐ์ • ํŠธ๋ฆฌ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•™์Šตํ•˜๋Š” ๋ฐฉ์‹์ด๋‹ค. ๊ณ ์„ฑ๋Šฅ ๋ฐ ๋†’์€ ์ •ํ™•๋„๋ฅผ ์ž๋ž‘ํ•˜๋ฉฐ, ์ถ”์ฒœ ์‹œ์Šคํ…œ, ๊ฒ€์ƒ‰ ์—”์ง„, ์ž์œจ ์ฃผํ–‰, ๋‚ ์”จ ์˜ˆ์ธก ๋“ฑ ๋‹ค์–‘ํ•œ ๋ถ„์•ผ์—์„œ ์‚ฌ์šฉ๋œ๋‹ค.2. CatBoost์˜ ์ฃผ์š” ํŠน์ง•1) ๋ณ„๋„ ํŒŒ๋ผ๋ฏธํ„ฐ ํŠœ๋‹ ์—†์ด๋„ ์šฐ์ˆ˜ํ•œ ์„ฑ๋Šฅ๊ธฐ๋ณธ ์„ค์ •๊ฐ’์œผ๋กœ๋„ ์ข‹์€ ์„ฑ๋Šฅ์„ ๋ฐœํœ˜ํ•จ์‚ฌ์šฉ์ž๊ฐ€ ๋ณต์žกํ•œ ํŒŒ๋ผ๋ฏธํ„ฐ ํŠœ๋‹์— ๋งŽ์€ ์‹œ๊ฐ„์„ ์†Œ๋น„ํ•˜์ง€ ์•Š์•„๋„ ๋จ2) ๋ฒ”์ฃผํ˜• ๋ฐ์ดํ„ฐ(Categorical Features) ์ง€์›์ผ๋ฐ˜์ ์ธ ๋จธ์‹ ๋Ÿฌ๋‹ ๋ชจ๋ธ์—์„œ๋Š” ๋ฒ”์ฃผํ˜• ๋ฐ์ดํ„ฐ๋ฅผ ์ˆซ์ž๋กœ ๋ณ€ํ™˜ํ•ด์•ผ ํ•˜์ง€๋งŒ, CatBoost๋Š” ์ž๋™์œผ๋กœ ๋ฒ”์ฃผํ˜• ๋ฐ์ดํ„ฐ๋ฅผ ์ฒ˜๋ฆฌํ•˜์—ฌ ๋ชจ๋ธ ์„ฑ๋Šฅ์„ ํ–ฅ์ƒ์‹œํ‚ด3) ๋น ๋ฅด๊ณ  ํ™•์žฅ ๊ฐ€๋Šฅํ•œ GPU..

[Python][pandas] Sorting Data - sort

This guide covers various methods for sorting data in Pandas, including the primary sorting functions sort_values() and sort_index(), as well as nlargest(), nsmallest(), reindex(), and the use of the key parameter in sort_values().1. Sorting with sort_values()The sort_values() method sorts a DataFrame based on column values. It is the most commonly used sorting function. import pandas as pddf = ..

[Python][pandas] Loading Data - Excel

What is an Excel File?An Excel file is a spreadsheet format created by Microsoft Excel, commonly stored with the extensions .xlsx or .xls. Each Excel file consists of multiple sheets, where data is organized into rows and columns.Excel is one of the most widely used formats in data analysis. Pandas provides the read_excel() function to easily handle Excel files. This guide will cover the basic s..

728x90
๋ฐ˜์‘ํ˜•