๋ฐ์ํ
2025.02.17 - [๊ฐ๋ฐ Code/์ธ๊ณต์ง๋ฅ A.I.] - [Python][AI] OpenCV YuNet์ ํ์ฉํ ์ผ๊ตด ํ์ง
1. ์ผ๊ตด ๋ชจ์์ดํฌ ์ฒ๋ฆฌ ๊ฐ์
์ด๋ฒ ๊ธ์์๋ OpenCV์ YuNet ๋ชจ๋ธ์ ์ด์ฉํ์ฌ ์ด๋ฏธ์ง์์ ์ผ๊ตด์ ์๋์ผ๋ก ํ์งํ๊ณ , ํด๋น ์์ญ์ ๋ชจ์์ดํฌ๋ฅผ ์ ์ฉํ๋ ๋ฐฉ๋ฒ์ ๋ค๋ฃฐ ๊ฒ์ด๋ค.
2. ์คํ ํ๊ฒฝ ์ค๋น
OpenCV ์ค์น
pip install opencv-python
3. YuNet ์ผ๊ตด ํ์ง ๋ชจ๋ธ ๋ค์ด๋ก๋
import os
import requests
# YuNet ๋ชจ๋ธ ํ์ผ ์ค์
model_filename = "face_detection_yunet_2023mar.onnx"
# ๋ชจ๋ธ ํ์ผ์ด ์์ ๊ฒฝ์ฐ ๋ค์ด๋ก๋
if not os.path.exists(model_filename):
url = "https://github.com/opencv/opencv_zoo/raw/main/models/face_detection_yunet/face_detection_yunet_2023mar.onnx"
print("YuNet ๋ชจ๋ธ ํ์ผ์ด ์์ต๋๋ค. ๋ค์ด๋ก๋๋ฅผ ์งํํฉ๋๋ค...")
response = requests.get(url, allow_redirects=True)
if response.status_code == 200:
with open(model_filename, "wb") as f:
f.write(response.content)
print("๋ชจ๋ธ ๋ค์ด๋ก๋ ์๋ฃ.")
else:
raise RuntimeError(f"๋ชจ๋ธ ๋ค์ด๋ก๋ ์คํจ: HTTP ์ํ ์ฝ๋ {response.status_code}")
4. ์ผ๊ตด ํ์ง ๋ฐ ๋ชจ์์ดํฌ ์ฒ๋ฆฌ ํจ์
YuNet์ ์ฌ์ฉํ์ฌ ์ผ๊ตด์ ํ์งํ๊ณ , ๋ชจ์์ดํฌ ํจ๊ณผ๋ฅผ ์ ์ฉํ๋ ํจ์๋ฅผ ๊ตฌํํจ.
import cv2 as cv
import numpy as np
import matplotlib.pyplot as plt
# ์ผ๊ตด ๊ฒ์ถ๊ธฐ ์์ฑ ํจ์
def create_face_detector():
detector = cv.FaceDetectorYN.create(
model=model_filename,
config="",
input_size=(320, 320), # ๊ธฐ๋ณธ ํฌ๊ธฐ, ์ดํ ์ด๋ฏธ์ง ํฌ๊ธฐ์ ๋ฐ๋ผ ๋ณ๊ฒฝ๋จ
score_threshold=0.9,
nms_threshold=0.3,
top_k=5000,
backend_id=cv.dnn.DNN_BACKEND_OPENCV,
target_id=cv.dnn.DNN_TARGET_CPU
)
return detector
# ๋ชจ์์ดํฌ ์ฒ๋ฆฌ ํจ์
def apply_mosaic(img, bbox, scale=0.1):
x, y, w_box, h_box = bbox[:4].astype(int)
x = max(0, x)
y = max(0, y)
w_box = min(w_box, img.shape[1] - x)
h_box = min(h_box, img.shape[0] - y)
if w_box <= 0 or h_box <= 0:
return img
face_region = img[y:y+h_box, x:x+w_box]
# downscale ํ upscaleํ์ฌ ๋ชจ์์ดํฌ ํจ๊ณผ ์ ์ฉ
small = cv.resize(face_region, None, fx=scale, fy=scale, interpolation=cv.INTER_LINEAR)
mosaic = cv.resize(small, (w_box, h_box), interpolation=cv.INTER_NEAREST)
img[y:y+h_box, x:x+w_box] = mosaic
return img
728x90
๋ฐ์ํ
5. ๋จ์ผ ์ด๋ฏธ์ง ์ผ๊ตด ๋ชจ์์ดํฌ ์ฒ๋ฆฌ
์ด์ ํน์ ์ด๋ฏธ์ง์์ ์ผ๊ตด์ ํ์งํ๊ณ ๋ชจ์์ดํฌ๋ฅผ ์ ์ฉํ๋ ์ฝ๋์.
# ๋จ์ผ ์ด๋ฏธ์ง ์ผ๊ตด ๋ชจ์์ดํฌ ์ฒ๋ฆฌ ํจ์
def process_image(image_path, mosaic_scale=0.1):
image = cv.imread(image_path)
if image is None:
raise ValueError(f"์ด๋ฏธ์ง๋ฅผ ๋ถ๋ฌ์ฌ ์ ์์ต๋๋ค: {image_path}")
h, w, _ = image.shape
# ์ผ๊ตด ํ์ง๊ธฐ ์์ฑ ๋ฐ ํฌ๊ธฐ ์ค์
face_detector = create_face_detector()
face_detector.setInputSize((w, h))
# ์ผ๊ตด ํ์ง ์ํ
ret, results = face_detector.detect(image)
if results is None:
results = np.empty((0, 5))
print(f"{results.shape[0]} ๊ฐ์ ์ผ๊ตด ๊ฒ์ถ๋จ.")
# ์ผ๊ตด ๋ชจ์์ดํฌ ์ ์ฉ
for det in results:
image = apply_mosaic(image, det, mosaic_scale)
# ๊ฒฐ๊ณผ ์ถ๋ ฅ (Jupyter Notebook)
plt.figure(figsize=(10, 10))
plt.imshow(cv.cvtColor(image, cv.COLOR_BGR2RGB))
plt.axis("off")
plt.show()
# ์คํ (๋จ์ผ ์ด๋ฏธ์ง ์ฒ๋ฆฌ)
image_path = "portrait-5601950_1280.jpg"
process_image(image_path)
์ค๋ช
- process_image(image_path): ์ด๋ฏธ์ง์์ ์ผ๊ตด์ ํ์งํ๊ณ ๋ชจ์์ดํฌ ์ฒ๋ฆฌ
- create_face_detector(): YuNet ์ผ๊ตด ํ์ง ๋ชจ๋ธ ์์ฑ
- apply_mosaic(image, det, mosaic_scale): ์ผ๊ตด ์์ญ์ ๋ชจ์์ดํฌ ์ ์ฉ
- plt.imshow(): Jupyter Notebook์์ ์ด๋ฏธ์ง ์ถ๋ ฅ
6. ๋๋ ํ ๋ฆฌ ๋ด ๋ชจ๋ ์ด๋ฏธ์ง ์ฒ๋ฆฌ
์ด์ ํด๋์ ์๋ ๋ชจ๋ ์ด๋ฏธ์ง ํ์ผ์ ์ฐพ์์ ์ผ๊ตด ๋ชจ์์ดํฌ๋ฅผ ์ ์ฉํ ์ ์๋๋ก ์ฝ๋ ํ์ฅํจ.
# ๋๋ ํ ๋ฆฌ ๋ด ๋ชจ๋ ์ด๋ฏธ์ง ์ฒ๋ฆฌ ํจ์
def process_directory(image_dir, output_dir, mosaic_scale=0.1):
if not os.path.exists(output_dir):
os.makedirs(output_dir) # ์ถ๋ ฅ ํด๋ ์์ฑ
# ์ง์ํ๋ ์ด๋ฏธ์ง ํ์ฅ์
valid_extensions = (".jpg", ".jpeg", ".png", ".bmp")
# ์ผ๊ตด ํ์ง๊ธฐ ์์ฑ
face_detector = create_face_detector()
# ๋๋ ํ ๋ฆฌ ๋ด ํ์ผ ํ์
for filename in os.listdir(image_dir):
if filename.lower().endswith(valid_extensions): # ์ด๋ฏธ์ง ํ์ผ๋ง ์ฒ๋ฆฌ
image_path = os.path.join(image_dir, filename)
output_path = os.path.join(output_dir, filename)
image = cv.imread(image_path)
if image is None:
print(f"์ด๋ฏธ์ง๋ฅผ ๋ถ๋ฌ์ฌ ์ ์์: {image_path}")
continue
h, w, _ = image.shape
# ํ์ง๊ธฐ ์
๋ ฅ ํฌ๊ธฐ ์ค์
face_detector.setInputSize((w, h))
# ์ผ๊ตด ํ์ง ์ํ
ret, results = face_detector.detect(image)
if results is None:
results = np.empty((0, 5))
print(f"[{filename}] {results.shape[0]} ๊ฐ์ ์ผ๊ตด ๊ฒ์ถ๋จ.")
# ์ผ๊ตด ๋ชจ์์ดํฌ ์ ์ฉ
for det in results:
image = apply_mosaic(image, det, mosaic_scale)
# ๊ฒฐ๊ณผ ์ ์ฅ
cv.imwrite(output_path, image)
print(f"[{filename}] ๋ชจ์์ดํฌ ์ฒ๋ฆฌ ์๋ฃ. ์ ์ฅ ๊ฒฝ๋ก: {output_path}")
# ์คํ (๋๋ ํ ๋ฆฌ ๋ด ๋ชจ๋ ์ด๋ฏธ์ง ์ฒ๋ฆฌ)
image_dir = "input_images" # ์๋ณธ ์ด๋ฏธ์ง ํด๋
output_dir = "output_images" # ๊ฒฐ๊ณผ ์ ์ฅ ํด๋
process_directory(image_dir, output_dir)
์ค๋ช
- process_directory(image_dir, output_dir): ์ง์ ํ ํด๋์ ๋ชจ๋ ์ด๋ฏธ์ง์ ๋ชจ์์ดํฌ ์ ์ฉ
- os.listdir(image_dir): ํด๋ ๋ด ํ์ผ ๋ชฉ๋ก ๊ฐ์ ธ์ค๊ธฐ
- face_detector.detect(image): ์ผ๊ตด ํ์ง ์ํ
- apply_mosaic(image, det, mosaic_scale): ์ผ๊ตด์ ๋ชจ์์ดํฌ ์ ์ฉ
- cv.imwrite(output_path, image): ๋ชจ์์ดํฌ ์ฒ๋ฆฌ๋ ์ด๋ฏธ์ง ์ ์ฅ
๋ฐ์ํ