๊ฐœ๋ฐœ Code/์ธ๊ณต์ง€๋Šฅ A.I.

[Python][AI] AI ๋ชจ๋ธ ์„ฑ๋Šฅ ์ง€ํ‘œ(Metrics) ์ •๋ฆฌ

5hr1rnp 2025. 2. 16. 14:52
๋ฐ˜์‘ํ˜•

metrics

AI ๋ชจ๋ธ์˜ ์„ฑ๋Šฅ์„ ํ‰๊ฐ€ํ•˜๊ธฐ ์œ„ํ•ด ๋‹ค์–‘ํ•œ ์„ฑ๋Šฅ ์ง€ํ‘œ(metrics)๊ฐ€ ์‚ฌ์šฉ๋œ๋‹ค. ๋ชจ๋ธ์ด ์–ผ๋งˆ๋‚˜ ์ •ํ™•ํ•˜๊ฒŒ ์ž‘๋™ํ•˜๋Š”์ง€, ์˜ˆ์ธก์ด ์–ผ๋งˆ๋‚˜ ์‹ ๋ขฐํ•  ์ˆ˜ ์žˆ๋Š”์ง€๋ฅผ ํ‰๊ฐ€ํ•˜๋Š” ๋ฐ ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•˜๋‹ค. ์ด๋ฒˆ ๊ธ€์—์„œ ๋Œ€ํ‘œ์ ์ธ ์„ฑ๋Šฅ ์ง€ํ‘œ๋“ค์„ ์†Œ๊ฐœํ•˜๊ฒ ๋‹ค.


1. ํšŒ๊ท€(Regression) ๋ชจ๋ธ ์„ฑ๋Šฅ ์ง€ํ‘œ


ํšŒ๊ท€ ๋ชจ๋ธ์€ ์—ฐ์†์ ์ธ ์ˆซ์ž ๊ฐ’์„ ์˜ˆ์ธกํ•˜๋Š” ๋ชจ๋ธ์ด๋ฉฐ, ์ฃผ๋กœ ํ‰๊ท  ์ œ๊ณฑ ์˜ค์ฐจ(Mean Squared Error)๋‚˜ ํ‰๊ท  ์ ˆ๋Œ€ ์˜ค์ฐจ(Mean Absolute Error) ๋“ฑ์˜ ์ง€ํ‘œ๋ฅผ ์‚ฌ์šฉํ•จ.

(1) MSE (Mean Squared Error, ํ‰๊ท  ์ œ๊ณฑ ์˜ค์ฐจ)

MSE๋Š” ์‹ค์ œ ๊ฐ’๊ณผ ์˜ˆ์ธก ๊ฐ’์˜ ์ฐจ์ด๋ฅผ ์ œ๊ณฑํ•œ ํ›„ ํ‰๊ท ์„ ๊ตฌํ•œ ๊ฐ’์ž„. ๊ฐ’์ด ์ž‘์„์ˆ˜๋ก ๋ชจ๋ธ์˜ ์˜ˆ์ธก์ด ์‹ค์ œ ๊ฐ’๊ณผ ๊ฐ€๊นŒ์›€์„ ์˜๋ฏธํ•จ.

mean squared error

  • ์žฅ์ : ์˜ค์ฐจ๋ฅผ ์ œ๊ณฑํ•˜์—ฌ ํฐ ์˜ค์ฐจ๋ฅผ ๊ฐ•์กฐํ•จ
  • ๋‹จ์ : ์ œ๊ณฑ์ด ์ ์šฉ๋˜๋ฏ€๋กœ ์ด์ƒ์น˜(outlier)์— ๋ฏผ๊ฐํ•จ

(2) RMSE (Root Mean Squared Error, ํ‰๊ท  ์ œ๊ณฑ๊ทผ ์˜ค์ฐจ)

RMSE๋Š” MSE์˜ ์ œ๊ณฑ๊ทผ์„ ์ทจํ•œ ๊ฐ’์œผ๋กœ, ์‹ค์ œ ๊ฐ’๊ณผ ์˜ˆ์ธก ๊ฐ’ ๊ฐ„์˜ ํ‰๊ท ์ ์ธ ์ฐจ์ด๋ฅผ ๋‚˜ํƒ€๋ƒ„. ๋‹จ์œ„๊ฐ€ ์›๋ž˜ ๋ฐ์ดํ„ฐ์™€ ๊ฐ™์•„ ํ•ด์„์ด ์‰ฌ์›€.

root mean squared error

  • ์žฅ์ : ๋‹จ์œ„๊ฐ€ ์›๋ณธ ๋ฐ์ดํ„ฐ์™€ ๋™์ผํ•˜์—ฌ ์ง๊ด€์  ํ•ด์„ ๊ฐ€๋Šฅ
  • ๋‹จ์ : MSE์ฒ˜๋Ÿผ ์ด์ƒ์น˜์— ๋ฏผ๊ฐํ•จ

(3) MAE (Mean Absolute Error, ํ‰๊ท  ์ ˆ๋Œ€ ์˜ค์ฐจ)

MAE๋Š” ์‹ค์ œ ๊ฐ’๊ณผ ์˜ˆ์ธก ๊ฐ’์˜ ์ ˆ๋Œ€ ์ฐจ์ด์˜ ํ‰๊ท ์„ ๊ตฌํ•œ ๊ฐ’์œผ๋กœ, ์˜ค์ฐจ์˜ ํฌ๊ธฐ๋ฅผ ์ง์ ‘์ ์œผ๋กœ ๋ฐ˜์˜ํ•จ.

mean absolute error

  • ์žฅ์ : ์ด์ƒ์น˜์— ๋œ ๋ฏผ๊ฐํ•จ.
  • ๋‹จ์ : ์˜ค์ฐจ์˜ ์ œ๊ณฑ์ด ์ ์šฉ๋˜์ง€ ์•Š์•„ ํฐ ์˜ค์ฐจ๋ฅผ ๊ฐ•์กฐํ•˜๋Š” ๋ฐ ๋ถ€์กฑํ•จ.

(4) R² Score (๊ฒฐ์ • ๊ณ„์ˆ˜, ์„ค๋ช…๋ ฅ)

๋ชจ๋ธ์ด ๋ฐ์ดํ„ฐ๋ฅผ ์–ผ๋งˆ๋‚˜ ์ž˜ ์„ค๋ช…ํ•˜๋Š”์ง€ ๋‚˜ํƒ€๋‚ด๋Š” ์ง€ํ‘œ๋กœ, 1์— ๊ฐ€๊นŒ์šธ์ˆ˜๋ก ์ข‹์€ ๋ชจ๋ธ์ž„.

r square score

  • ์žฅ์ : ๋ชจ๋ธ์˜ ์„ค๋ช…๋ ฅ์„ ์ง๊ด€์ ์œผ๋กœ ๋‚˜ํƒ€๋ƒ„
  • ๋‹จ์ : ๋‹ค์ค‘ ํšŒ๊ท€ ๋ชจ๋ธ์—์„œ๋Š” ๋ณ€์ˆ˜ ๊ฐœ์ˆ˜ ์ฆ๊ฐ€์— ๋”ฐ๋ผ ๊ฐ’์ด ๊ณผ๋Œ€ ํ‰๊ฐ€๋  ์ˆ˜ ์žˆ์Œ

728x90
๋ฐ˜์‘ํ˜•

2. ๋ถ„๋ฅ˜(Classification) ๋ชจ๋ธ ์„ฑ๋Šฅ ์ง€ํ‘œ


๋ถ„๋ฅ˜ ๋ชจ๋ธ์€ ํŠน์ • ํด๋ž˜์Šค๋กœ ๋ฐ์ดํ„ฐ๋ฅผ ๋ถ„๋ฅ˜ํ•˜๋Š” ๋ชจ๋ธ์ด๋ฉฐ, ๋Œ€ํ‘œ์ ์œผ๋กœ ์ •ํ™•๋„(Accuracy), ์ •๋ฐ€๋„(Precision), ์žฌํ˜„์œจ(Recall), F1-score ๋“ฑ์˜ ์ง€ํ‘œ๋ฅผ ์‚ฌ์šฉํ•จ.

(1) Accuracy (์ •ํ™•๋„)

์ „์ฒด ์ƒ˜ํ”Œ ์ค‘์—์„œ ์˜ฌ๋ฐ”๋ฅด๊ฒŒ ์˜ˆ์ธกํ•œ ๋น„์œจ์„ ๋‚˜ํƒ€๋ƒ„.

accuracy

  • ์žฅ์ : ์ง๊ด€์ ์ธ ์„ฑ๋Šฅ ์ง€ํ‘œ์ž„
  • ๋‹จ์ : ๋ฐ์ดํ„ฐ๊ฐ€ ๋ถˆ๊ท ํ˜•ํ•  ๊ฒฝ์šฐ ์„ฑ๋Šฅ์„ ๊ณผ๋Œ€ํ‰๊ฐ€ํ•  ์ˆ˜ ์žˆ์Œ

(2) Precision (์ •๋ฐ€๋„, ์–‘์„ฑ ์˜ˆ์ธก๋„)

๋ชจ๋ธ์ด ์–‘์„ฑ(Positive)์ด๋ผ๊ณ  ์˜ˆ์ธกํ•œ ๊ฒƒ ์ค‘ ์‹ค์ œ๋กœ ์–‘์„ฑ์ธ ๋น„์œจ์„ ์˜๋ฏธํ•จ.

precision

  • ์žฅ์ : False Positive๋ฅผ ์ค„์ด๋Š” ๋ฐ ์œ ์šฉํ•จ
  • ๋‹จ์ : FN์„ ๊ณ ๋ คํ•˜์ง€ ์•Š์œผ๋ฏ€๋กœ, ์‹ค์ œ ์ค‘์š”ํ•œ ์–‘์„ฑ์„ ๋†“์น  ์ˆ˜ ์žˆ์Œ

(3) Recall (์žฌํ˜„์œจ, ๋ฏผ๊ฐ๋„, True Positive Rate)

์‹ค์ œ ์–‘์„ฑ ์ค‘์—์„œ ๋ชจ๋ธ์ด ์–‘์„ฑ์ด๋ผ๊ณ  ์˜ˆ์ธกํ•œ ๋น„์œจ์„ ๋‚˜ํƒ€๋ƒ„.

recall

  • ์žฅ์ : FN์„ ์ค„์ด๋Š” ๋ฐ ์œ ์šฉํ•จ
  • ๋‹จ์ : FP๋ฅผ ๊ณ ๋ คํ•˜์ง€ ์•Š์œผ๋ฏ€๋กœ, ๋ถˆํ•„์š”ํ•œ ์–‘์„ฑ ์˜ˆ์ธก์ด ๋งŽ์„ ์ˆ˜ ์žˆ์Œ

(4) F1-score (์กฐํ™” ํ‰๊ท )

์ •๋ฐ€๋„(Precision)์™€ ์žฌํ˜„์œจ(Recall)์˜ ์กฐํ™” ํ‰๊ท ์œผ๋กœ, ๋‘ ๊ฐ’์„ ๊ท ํ˜• ์žˆ๊ฒŒ ๊ณ ๋ คํ•จ.

f1-score

  • ์žฅ์ : Precision๊ณผ Recall์˜ ๊ท ํ˜•์„ ๋งž์ถค
  • ๋‹จ์ : ํŠน์ •ํ•œ ์ƒํ™ฉ์—์„œ Precision๊ณผ Recall ์ค‘ ํ•˜๋‚˜๋ฅผ ๋” ๊ณ ๋ คํ•ด์•ผ ํ•  ์ˆ˜๋„ ์žˆ์Œ

(5) AUC-ROC (Area Under the Curve - Receiver Operating Characteristic curve)

ROC ์ปค๋ธŒ์˜ ์•„๋ž˜ ๋ฉด์ (AUC)์„ ์˜๋ฏธํ•˜๋ฉฐ, ๋ชจ๋ธ์˜ ๋ถ„๋ฅ˜ ์„ฑ๋Šฅ์„ ์ข…ํ•ฉ์ ์œผ๋กœ ํ‰๊ฐ€ํ•จ.

  • AUC ๊ฐ’ ์˜๋ฏธ
    • 0.5: ๋ฌด์ž‘์œ„ ์˜ˆ์ธก๊ณผ ๋™์ผํ•œ ์„ฑ๋Šฅ
    • 0.7~0.8: ์ค€์ˆ˜ํ•œ ์„ฑ๋Šฅ
    • 0.8~0.9: ์ข‹์€ ์„ฑ๋Šฅ
    • 0.9 ์ด์ƒ: ๋งค์šฐ ์ข‹์€ ์„ฑ๋Šฅ

3. ๋ชจ๋ธ ํ‰๊ฐ€ ์‹œ ๊ณ ๋ คํ•  ์ 


  • ๋ฐ์ดํ„ฐ ๋ถˆ๊ท ํ˜•: Accuracy๋งŒ์œผ๋กœ ํ‰๊ฐ€ํ•˜๋ฉด ์•ˆ ๋˜๊ณ  Precision, Recall, F1-score ๋“ฑ์„ ํ•จ๊ป˜ ๋ถ„์„ํ•ด์•ผ ํ•จ
  • ๋น„์ฆˆ๋‹ˆ์Šค ๋ชฉ์ ์— ๋”ฐ๋ฅธ ์ง€ํ‘œ ์„ ํƒ: ๊ธˆ์œต ์‚ฌ๊ธฐ ํƒ์ง€ ๊ฐ™์€ ๊ฒฝ์šฐ Recall์„ ๋†’์ด๋Š” ๊ฒƒ์ด ์ค‘์š”ํ•  ์ˆ˜ ์žˆ๊ณ , ๊ด‘๊ณ  ํด๋ฆญ ์˜ˆ์ธก์—์„œ๋Š” Precision์ด ์ค‘์š”ํ•  ์ˆ˜ ์žˆ์Œ
  • ์ด์ƒ์น˜ ์˜ํ–ฅ ๊ณ ๋ ค: ํšŒ๊ท€ ๋ชจ๋ธ์—์„œ๋Š” ์ด์ƒ์น˜์— ๋ฏผ๊ฐํ•œ MSE๋ณด๋‹ค MAE๋ฅผ ํ™œ์šฉํ•  ์ˆ˜๋„ ์žˆ์Œ

4. ๊ฒฐ๋ก 


AI ๋ชจ๋ธ์˜ ์„ฑ๋Šฅ์„ ํ‰๊ฐ€ํ•˜๊ธฐ ์œ„ํ•ด ๋‹ค์–‘ํ•œ ์ง€ํ‘œ๊ฐ€ ์‚ฌ์šฉ๋จ. ํšŒ๊ท€ ๋ชจ๋ธ๊ณผ ๋ถ„๋ฅ˜ ๋ชจ๋ธ์—์„œ ๊ฐ๊ฐ ์ ์ ˆํ•œ ์ง€ํ‘œ๋ฅผ ์„ ํƒํ•ด์•ผ ํ•˜๋ฉฐ, ๋ฐ์ดํ„ฐ ํŠน์„ฑ๊ณผ ๋ฌธ์ œ ์ƒํ™ฉ์— ๋งž๊ฒŒ ํ‰๊ฐ€ ๊ธฐ์ค€์„ ์„ค์ •ํ•˜๋Š” ๊ฒƒ์ด ์ค‘์š”ํ•จ.

๋ฐ˜์‘ํ˜•