๊ฐœ๋ฐœ Code/์ธ๊ณต์ง€๋Šฅ A.I.

[Python][AI] ๋กœ๋˜ ๋ฒˆํ˜ธ ์˜ˆ์ธก ํ…Œ์ŠคํŠธ ์ง„ํ–‰ ๋ฐ ๊ฒฐ๊ณผ ๋ถ„์„

5hr1rnp 2025. 2. 26. 23:00
๋ฐ˜์‘ํ˜•

์ถœ์ฒ˜ : https://dhlottery.co.kr/gameInfo.do?method=buyLotto

 

2025.02.18 - [๊ฐœ๋ฐœ Code/์ธ๊ณต์ง€๋Šฅ A.I.] - [Python][AI] ํ•œ๊ตญ ๋กœ๋˜ ๋ถ„์„: ๋‹น์ฒจ ํ™•๋ฅ ๊ณผ ์˜ˆ์ธก์˜ ๋ถˆ๊ฐ€๋Šฅ์„ฑ

2025.02.19 - [๊ฐœ๋ฐœ Code/์ธ๊ณต์ง€๋Šฅ A.I.] - [Python][AI] ํ•œ๊ตญ ๋กœ๋˜ ๋ถ„์„: ๋‹น์ฒจ ๋ฒˆํ˜ธ ๋ถ„์„๊ณผ ํŒจํ„ด ์ฐพ๊ธฐ(EDA)

2025.02.24 - [๊ฐœ๋ฐœ Code/์ธ๊ณต์ง€๋Šฅ A.I.] - [Python][AI] ํ•œ๊ตญ ๋กœ๋˜ ๋ถ„์„ : ์ถ”๊ฐ€ EDA ๋ฐ ML ๋ฒˆํ˜ธ ์˜ˆ์ธก

 

๋กœ๋˜ ๋ฒˆํ˜ธ ์˜ˆ์ธก์„ ์œ„ํ•œ ์ถ”๊ฐ€ ํ…Œ์ŠคํŠธ๋ฅผ ์ง„ํ–‰ํ•˜์˜€๋‹ค. ์ด๋ฒˆ ํ…Œ์ŠคํŠธ์—์„œ๋Š” ๋จธ์‹ ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜ ๋ชจ๋ธ์„ ํ™œ์šฉํ•˜์—ฌ ๋กœ๋˜ ๋‹น์ฒจ ๋ฒˆํ˜ธ๋ฅผ ์˜ˆ์ธกํ•˜๊ณ , ๊ทธ ์„ฑ๋Šฅ์„ ํ‰๊ฐ€ํ•˜๋Š” ๊ณผ์ •์„ ์ง„ํ–‰ํ•˜์˜€๋‹ค.


1. ์˜ˆ์ธก ๋ชจ๋ธ ๊ฐœ์š”


์˜ˆ์ธก์„ ์œ„ํ•ด CatBoost, XGBoost, LightGBM, RandomForest ์ด 4๊ฐ€์ง€ ๋จธ์‹ ๋Ÿฌ๋‹ ๋ชจ๋ธ์„ ์‚ฌ์šฉํ•˜์˜€๋‹ค.
๊ฐ ๋ชจ๋ธ์€ ๋กœ๋˜ ๊ณผ๊ฑฐ ๋ฐ์ดํ„ฐ๋ฅผ ํ•™์Šตํ•˜๊ณ , ํŠน์ • ํšŒ์ฐจ์—์„œ ๋‹น์ฒจ๋  ๊ฐ€๋Šฅ์„ฑ์ด ๋†’์€ ์ˆซ์ž๋ฅผ ์˜ˆ์ธกํ•˜๋Š” ๋ฐฉ์‹์œผ๋กœ ๋™์ž‘ํ•œ๋‹ค.

์ฃผ์š” ํŠน์ง•

  • ๊ณผ๊ฑฐ 10ํšŒ์ฐจ ๋ฐ์ดํ„ฐ๋ฅผ ํ™œ์šฉํ•œ ํ”ผ์ฒ˜ ์ƒ์„ฑ
    • ๊ฐ€์žฅ ์ž์ฃผ ๋“ฑ์žฅํ•œ ๋ฒˆํ˜ธ
    • ํ™€์ˆ˜/์ง์ˆ˜ ๋น„์œจ
    • ๋‚ฎ์€ ์ˆซ์ž(1~22)์˜ ๋น„์œจ
    • ์ตœ๊ทผ 10ํšŒ ๋™์•ˆ ๊ฐ ๋ฒˆํ˜ธ๊ฐ€ ๋“ฑ์žฅํ•œ ํšŸ์ˆ˜ (1~45๊นŒ์ง€ 45์ฐจ์› ๋ฒกํ„ฐ)
  • ํ›ˆ๋ จ ๋ฐ ํ…Œ์ŠคํŠธ ๋ฐ์ดํ„ฐ ๊ตฌ์„ฑ
    • ํšŒ์ฐจ 11~800: ํ›ˆ๋ จ ๋ฐ์ดํ„ฐ (train data)
    • ํšŒ์ฐจ 801~1000: ๊ฒ€์ฆ ๋ฐ์ดํ„ฐ (validation data)
    • ํšŒ์ฐจ 1001~1159: ํ…Œ์ŠคํŠธ ๋ฐ์ดํ„ฐ(test data)
  • 4๊ฐœ ๋ชจ๋ธ์„ ๊ฐ๊ฐ ํ•™์Šตํ•˜์—ฌ ์˜ˆ์ธก ํ™•๋ฅ ์„ ํ‰๊ท ํ™”
    • ๊ฐ ์ˆซ์ž(1~45)์— ๋Œ€ํ•ด ์˜ˆ์ธก ํ™•๋ฅ ์„ ๊ณ„์‚ฐ
    • ํ™•๋ฅ ์ด ๋†’์€ 6๊ฐœ ๋ฒˆํ˜ธ๋ฅผ ์„ ํƒํ•˜์—ฌ ์ตœ์ข… ์˜ˆ์ธก๊ฐ’์œผ๋กœ ์‚ฌ์šฉ

2. ๋ชจ๋ธ ํ•™์Šต ๊ณผ์ •


๊ฐ ๋ฒˆํ˜ธ(1~45)์— ๋Œ€ํ•ด ๊ฐœ๋ณ„์ ์ธ ์ด์ง„ ๋ถ„๋ฅ˜ ๋ชจ๋ธ์„ ํ•™์Šตํ•˜์˜€๋‹ค.
์ฆ‰, ์ˆซ์ž 1~45 ๊ฐ๊ฐ์— ๋Œ€ํ•ด ๋‹น์ฒจ๋  ํ™•๋ฅ ์„ ์˜ˆ์ธกํ•˜๋Š” ๋ชจ๋ธ์„ ๋”ฐ๋กœ ํ•™์Šตํ•˜์—ฌ ์ตœ์ข…์ ์œผ๋กœ ์กฐํ•ฉํ•˜๋Š” ๋ฐฉ์‹์ด๋‹ค.

ํ›ˆ๋ จ๋œ ๋ชจ๋ธ์€ predict_numbers(X_test) ํ•จ์ˆ˜๋ฅผ ํ†ตํ•ด ํ…Œ์ŠคํŠธ ๋ฐ์ดํ„ฐ์—์„œ ๋‹น์ฒจ ํ™•๋ฅ ์ด ๋†’์€ ๋ฒˆํ˜ธ๋ฅผ ์˜ˆ์ธกํ•˜๊ฒŒ ๋œ๋‹ค.

 

์ „์ฒด ์ฝ”๋“œ๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค.

import pandas as pd
import numpy as np
from catboost import CatBoostClassifier
import xgboost as xgb
import lightgbm as lgb
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import roc_auc_score, average_precision_score

# CSV ํŒŒ์ผ์—์„œ ๋ฐ์ดํ„ฐ ์ฝ๊ธฐ (์ปฌ๋Ÿผ: 'ํšŒ์ฐจ', '๋ฒˆํ˜ธ1', '๋ฒˆํ˜ธ2', ..., '๋ฒˆํ˜ธ6')
data = pd.read_csv('./lotto/lotto.csv')

# ํšŒ์ฐจ ์ˆœ์œผ๋กœ ์ •๋ ฌ
data = data.sort_values('ํšŒ์ฐจ').reset_index(drop=True)

# ๊ฐ ํšŒ์ฐจ ๋‹น์ฒจ๋ฒˆํ˜ธ๋ฅผ ์ง‘ํ•ฉ ํ˜•ํƒœ๋กœ ๋ณ€ํ™˜
def row_to_set(row):
    return set([row['๋ฒˆํ˜ธ1'], row['๋ฒˆํ˜ธ2'], row['๋ฒˆํ˜ธ3'], row['๋ฒˆํ˜ธ4'], row['๋ฒˆํ˜ธ5'], row['๋ฒˆํ˜ธ6']])
data['winning_set'] = data.apply(row_to_set, axis=1)

# ํ”ผ์ฒ˜ ๋ฐ ํƒ€๊นƒ ๋ฐ์ดํ„ฐ ์ƒ์„ฑ (์ง์ „ 10ํšŒ ๋ฐ์ดํ„ฐ๋ฅผ ํ™œ์šฉํ•˜๊ธฐ ์œ„ํ•ด 11ํšŒ์ฐจ๋ถ€ํ„ฐ ์‚ฌ์šฉ)
features = []
targets = []
indices = []  # ํšŒ์ฐจ ๋ฒˆํ˜ธ ์ €์žฅ

for i in range(10, len(data)):  # i=10๋Š” 11ํšŒ์ฐจ์— ํ•ด๋‹น
    # ํ˜„์žฌ ํšŒ์ฐจ ์ด์ „์˜ ์ „์ฒด ๋ฐ์ดํ„ฐ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ๊ฐ€์žฅ ์ž์ฃผ ๋‹น์ฒจ๋œ ๋ฒˆํ˜ธ ๊ณ„์‚ฐ
    past_draws = data.iloc[:i]
    freq = np.zeros(46)  # ์ธ๋ฑ์Šค 0์€ ์‚ฌ์šฉํ•˜์ง€ ์•Š์Œ
    for ws in past_draws['winning_set']:
        for num in ws:
            freq[num] += 1
    most_freq = np.argmax(freq[1:]) + 1  # ์ธ๋ฑ์Šค ๋ณด์ •

    # ์ตœ๊ทผ 10ํšŒ ๋ฐ์ดํ„ฐ ํ™œ์šฉ
    window = data.iloc[i-10:i]
    window_numbers = []
    for ws in window['winning_set']:
        window_numbers.extend(list(ws))
    window_numbers = np.array(window_numbers)
    
    # ํ™€์ˆ˜/์ง์ˆ˜ ๋น„์œจ
    odd_count = np.sum(window_numbers % 2 == 1)
    odd_ratio = odd_count / len(window_numbers)
    
    # 1~22๋ฒˆ (๋‚ฎ์€ ๋ฒˆํ˜ธ) ๋น„์œจ
    low_count = np.sum(window_numbers <= 22)
    low_ratio = low_count / len(window_numbers)
    
    # ์ตœ๊ทผ 10ํšŒ ๋‹น์ฒจ๋ฒˆํ˜ธ์˜ ๋“ฑ์žฅ ํšŸ์ˆ˜๋ฅผ 1~45๊นŒ์ง€ ๊ณ„์‚ฐ (45์ฐจ์› ๋ฒกํ„ฐ)
    window_count = [np.sum(window_numbers == num) for num in range(1, 46)]
    
    # ์ตœ์ข… ํ”ผ์ฒ˜: [๊ฐ€์žฅ ์ž์ฃผ ๋‹น์ฒจ๋œ ๋ฒˆํ˜ธ, ํ™€์ˆ˜ ๋น„์œจ, ๋‚ฎ์€ ๋ฒˆํ˜ธ ๋น„์œจ] + [์ตœ๊ทผ 10ํšŒ ๊ฐ ๋ฒˆํ˜ธ ๋“ฑ์žฅ ํšŸ์ˆ˜]
    feat = [most_freq, odd_ratio, low_ratio] + window_count
    features.append(feat)
    
    # ํƒ€๊นƒ: ํ˜„์žฌ ํšŒ์ฐจ ๋‹น์ฒจ๋ฒˆํ˜ธ๋ฅผ 45์ฐจ์› ์ด์ง„ ๋ฒกํ„ฐ๋กœ ํ‘œํ˜„
    target = [1 if num in data.iloc[i]['winning_set'] else 0 for num in range(1, 46)]
    targets.append(target)
    indices.append(data.iloc[i]['ํšŒ์ฐจ'])

features = np.array(features)
targets = np.array(targets)

# ํšŒ์ฐจ ๋ฒˆํ˜ธ๋ฅผ ๊ธฐ์ค€์œผ๋กœ ๋ฐ์ดํ„ฐ ๋ถ„ํ• 
# ํ›ˆ๋ จ: ํšŒ์ฐจ 11~800, ๊ฒ€์ฆ: ํšŒ์ฐจ 801~1000, ํ…Œ์ŠคํŠธ: ํšŒ์ฐจ 1001 ์ด์ƒ
train_idx = [i for i, x in enumerate(indices) if x <= 800]
val_idx = [i for i, x in enumerate(indices) if 801 <= x <= 1000]
test_idx = [i for i, x in enumerate(indices) if x >= 1001]

X_train, y_train = features[train_idx], targets[train_idx]
X_val, y_val = features[val_idx], targets[val_idx]
X_test, y_test = features[test_idx], targets[test_idx]

# ๊ฐ ๋ฒˆํ˜ธ๋ณ„ ๋ชจ๋ธ ํ•™์Šต์„ ์œ„ํ•œ ๋ฆฌ์ŠคํŠธ ์ดˆ๊ธฐํ™”
models_cat = []
models_xgb = []
models_lgb = []
models_rf  = []

for num in range(45):  # ๋ฒˆํ˜ธ 1~45 (์ธ๋ฑ์Šค 0๋ถ€ํ„ฐ 44)
    y_train_num = y_train[:, num]
    y_val_num = y_val[:, num]
    
    # CatBoost ๋ชจ๋ธ
    model_cat = CatBoostClassifier(
        verbose=False,
        random_state=42
    )
    model_cat.fit(X_train, y_train_num, eval_set=(X_val, y_val_num), verbose=False)
    models_cat.append(model_cat)
    
    # XGBoost ๋ชจ๋ธ
    model_xgb = xgb.XGBClassifier(
        eval_metric='logloss',
        random_state=42
    )
    model_xgb.fit(X_train, y_train_num, eval_set=[(X_val, y_val_num)], verbose=False)
    models_xgb.append(model_xgb)
    
    # LGBM ๋ชจ๋ธ
    model_lgb = lgb.LGBMClassifier(
        random_state=42, 
        verbosity=-1
    )
    model_lgb.fit(X_train, y_train_num, eval_set=[(X_val, y_val_num)])
    models_lgb.append(model_lgb)
    
    # RandomForest ๋ชจ๋ธ
    model_rf = RandomForestClassifier(
        random_state=42
    )
    model_rf.fit(X_train, y_train_num)
    models_rf.append(model_rf)

# ๊ฒ€์ฆ ๋˜๋Š” ํ…Œ์ŠคํŠธ ์‹œ, ๋„ค ๋ชจ๋ธ์˜ ์˜ˆ์ธก ํ™•๋ฅ ์„ ํ‰๊ท ํ•˜์—ฌ ์ตœ์ข… ํ™•๋ฅ  ์‚ฐ์ถœ
def predict_numbers(X):
    preds = []
    for i in range(len(X)):
        probs = []
        for j in range(45):
            prob_cat = models_cat[j].predict_proba(X[i].reshape(1, -1))[0][1]
            prob_xgb = models_xgb[j].predict_proba(X[i].reshape(1, -1))[0][1]
            prob_lgb = models_lgb[j].predict_proba(X[i].reshape(1, -1))[0][1]
            prob_rf  = models_rf[j].predict_proba(X[i].reshape(1, -1))[0][1]
            avg_prob = (prob_cat + prob_xgb + prob_lgb + prob_rf) / 4.0
            probs.append(avg_prob)
        preds.append(probs)
    return np.array(preds)

# ํ…Œ์ŠคํŠธ ๋ฐ์ดํ„ฐ์— ๋Œ€ํ•œ ํ™•๋ฅ  ์˜ˆ์ธก
test_probs = predict_numbers(X_test)

# ์ƒ์œ„ 6๊ฐœ ๋ฒˆํ˜ธ ์„ ํƒ: ์˜ˆ์ธก ํ™•๋ฅ ์ด ๊ฐ€์žฅ ๋†’์€ ๋ฒˆํ˜ธ 6๊ฐœ ์„ ํƒ
test_predictions = []
for probs in test_probs:
    top6 = np.argsort(probs)[-6:] + 1  # ์ธ๋ฑ์Šค ๋ณด์ •
    test_predictions.append(np.sort(top6))

# ๊ธฐ์กด ํ‰๊ฐ€: Accuracy ๋ฐ F1-Score (๋‹ค์ค‘ ๋ ˆ์ด๋ธ” ํ‰๊ฐ€)
def evaluate_predictions(y_true, y_pred):
    accuracies = []
    f1s = []
    for true, pred in zip(y_true, y_pred):
        true_set = set(np.where(true==1)[0])
        pred_set = set(np.array(pred) - 1)  # ์ธ๋ฑ์Šค ์กฐ์ •
        tp = len(true_set & pred_set)
        fp = len(pred_set - true_set)
        fn = len(true_set - pred_set)
        accuracy = (tp + (45 - len(true_set) - fp)) / 45
        if tp == 0:
            f1 = 0
        else:
            precision = tp / (tp + fp)
            recall = tp / (tp + fn)
            f1 = 2 * precision * recall / (precision + recall)
        accuracies.append(accuracy)
        f1s.append(f1)
    return np.mean(accuracies), np.mean(f1s)

acc, f1 = evaluate_predictions(y_test, test_predictions)
print("ํ…Œ์ŠคํŠธ Accuracy:", acc)
print("ํ…Œ์ŠคํŠธ F1-Score:", f1)

# ROC-AUC ๋ฐ PR-AUC ํ‰๊ฐ€ (๋‹ค์ค‘ ๋ ˆ์ด๋ธ”์˜ ๊ฒฝ์šฐ Macro Average ์‚ฌ์šฉ)
roc_auc = roc_auc_score(y_test, test_probs, average='macro')
pr_auc = average_precision_score(y_test, test_probs, average='macro')
print("ํ…Œ์ŠคํŠธ ROC-AUC:", roc_auc)
print("ํ…Œ์ŠคํŠธ PR-AUC:", pr_auc)

# ํ…Œ์ŠคํŠธ ํšŒ์ฐจ ๋‹น 5์„ธํŠธ ์˜ˆ์ธก (์‹ค์ œ ๋กœ๋˜ ๊ตฌ๋งค ์‹œ 5ํšŒ ๊ตฌ๋งค ๋ชจ์‚ฌ)
def generate_multiple_predictions(X, models_cat, models_xgb, models_lgb, models_rf, num_sets=5):
    all_sets = []
    for i in range(len(X)):
        probs = []
        for j in range(45):
            prob_cat = models_cat[j].predict_proba(X[i].reshape(1, -1))[0][1]
            prob_xgb = models_xgb[j].predict_proba(X[i].reshape(1, -1))[0][1]
            prob_lgb = models_lgb[j].predict_proba(X[i].reshape(1, -1))[0][1]
            prob_rf  = models_rf[j].predict_proba(X[i].reshape(1, -1))[0][1]
            avg_prob = (prob_cat + prob_xgb + prob_lgb + prob_rf) / 4.0
            probs.append(avg_prob)
        probs = np.array(probs)
        sets = []
        sorted_idx = np.argsort(probs)[::-1]
        # ์ฒซ ๋ฒˆ์งธ ์„ธํŠธ: ์ƒ์œ„ 6๊ฐœ ๋ฒˆํ˜ธ
        sets.append(np.sort(sorted_idx[:6] + 1))
        # ์ถ”๊ฐ€ ์„ธํŠธ: ์ƒ์œ„ ๋ฒˆํ˜ธ ์กฐํ•ฉ์—์„œ ์ผ๋ถ€ ๋ฒˆํ˜ธ๋ฅผ ๊ต์ฒดํ•˜์—ฌ ๋ณ€ํ˜• ์ ์šฉ
        for s in range(1, num_sets):
            candidate = list(sorted_idx[:6])
            idx_to_swap = s % 6
            for cand in sorted_idx:
                if cand not in candidate:
                    candidate[idx_to_swap] = cand
                    break
            sets.append(np.sort(np.array(candidate) + 1))
        all_sets.append(sets)
    return all_sets

multiple_predictions = generate_multiple_predictions(X_test, models_cat, models_xgb, models_lgb, models_rf, num_sets=5)

# ์˜ˆ์‹œ: ์ฒซ ๋ฒˆ์งธ ํ…Œ์ŠคํŠธ ํšŒ์ฐจ์˜ 5์„ธํŠธ ์˜ˆ์ธก ๋ฒˆํ˜ธ ์ถœ๋ ฅ
print("์ฒซ ๋ฒˆ์งธ ํ…Œ์ŠคํŠธ ํšŒ์ฐจ ์˜ˆ์ธก ๋ฒˆํ˜ธ 5์„ธํŠธ:")
for s in multiple_predictions[-1]:
    print(s)
print("1160ํšŒ ๋‹น์ฒจ ๋ฒˆํ˜ธ")
print('[7, 13, 18, 36, 39, 45]')

728x90
๋ฐ˜์‘ํ˜•

3. ๋ชจ๋ธ ํ‰๊ฐ€ ๊ฒฐ๊ณผ


์„ฑ๋Šฅ ์ง€ํ‘œ

  • ํ…Œ์ŠคํŠธ Accuracy: 0.7741
  • ํ…Œ์ŠคํŠธ F1-Score: 0.1530
  • ํ…Œ์ŠคํŠธ ROC-AUC: 0.5049
  • ํ…Œ์ŠคํŠธ PR-AUC: 0.1652

โ— Accuracy๊ฐ€ 77.4%๋กœ ๋†’์€ ๊ฒƒ์ฒ˜๋Ÿผ ๋ณด์ด์ง€๋งŒ, ์ด๋Š” ์ „์ฒด 45๊ฐœ ๋ฒˆํ˜ธ ์ค‘์—์„œ 6๊ฐœ๋งŒ ์ •๋‹ต์ด๋ฏ€๋กœ ์˜๋ฏธ๊ฐ€ ํฌ์ง€๋Š” ์•Š๋‹ค.
โ— F1-score์™€ PR-AUC๊ฐ€ ๋‚ฎ๊ฒŒ ๋‚˜์˜จ ๊ฒƒ์€ ์˜ˆ์ธก๋œ ๋ฒˆํ˜ธ์™€ ์‹ค์ œ ๋‹น์ฒจ ๋ฒˆํ˜ธ๊ฐ€ ๋งŽ์ด ์ผ์น˜ํ•˜์ง€ ์•Š๋Š”๋‹ค๋Š” ์˜๋ฏธ์ด๋‹ค.

 


4. ์˜ˆ์ธก ๊ฒฐ๊ณผ ๋ถ„์„


์ฒซ ๋ฒˆ์งธ ํ…Œ์ŠคํŠธ ํšŒ์ฐจ ์˜ˆ์ธก ๋ฒˆํ˜ธ (1160ํšŒ)

์‹ค์ œ ๋กœ๋˜๋ฅผ ๊ตฌ๋งคํ•œ๋‹ค๊ณ  ๊ฐ€์ •ํ•˜๊ณ , ๊ฐ ํšŒ์ฐจ๋ณ„ 5์„ธํŠธ์”ฉ ๋ฒˆํ˜ธ๋ฅผ ์˜ˆ์ธกํ•˜์˜€๋‹ค. 

์ฒซ ๋ฒˆ์งธ ํ…Œ์ŠคํŠธ ํšŒ์ฐจ ์˜ˆ์ธก ๋ฒˆํ˜ธ 5์„ธํŠธ:
[14 17 40 41 42 43]
[13 14 17 40 42 43]
[13 14 17 40 41 43]
[13 14 17 41 42 43]
[13 14 40 41 42 43]

1160ํšŒ ์‹ค์ œ ๋‹น์ฒจ ๋ฒˆํ˜ธ

[7, 13, 18, 36, 39, 45]

๋ถ„์„

  • ์˜ˆ์ธก๋œ ๋ฒˆํ˜ธ์™€ ์‹ค์ œ ๋‹น์ฒจ ๋ฒˆํ˜ธ๋ฅผ ๋น„๊ตํ–ˆ์„ ๋•Œ, 13 ํ•˜๋‚˜๋งŒ ์ผ์น˜ํ•˜์˜€๋‹ค.
  • ์ฆ‰, ์ •ํ™•ํ•œ ์˜ˆ์ธก ์„ฑ๋Šฅ์€ ๋‚ฎ์•˜๋‹ค.
  • ์˜ˆ์ธก ํ™•๋ฅ ์ด ๋†’์€ ๋ฒˆํ˜ธ๋ฅผ ์„ ํƒํ•˜๋Š” ๋ฐฉ์‹์ด์ง€๋งŒ, ์‹ค์ œ ๋กœ๋˜๋Š” ์™„์ „ํ•œ ๋‚œ์ˆ˜์— ๊ฐ€๊นŒ์šด ๋ถ„ํฌ๋ฅผ ๋ณด์ด๊ธฐ ๋•Œ๋ฌธ์— ์˜ˆ์ธก์ด ์‰ฝ์ง€ ์•Š๋‹ค.

5. ๊ฒฐ๋ก  ๋ฐ ๊ฐœ์„  ๋ฐฉํ–ฅ


๊ฒฐ๋ก 

  • ๋จธ์‹ ๋Ÿฌ๋‹ ๋ชจ๋ธ์„ ํ™œ์šฉํ•˜์—ฌ ๋กœ๋˜ ๋ฒˆํ˜ธ๋ฅผ ์˜ˆ์ธกํ•˜๋Š” ๊ฒƒ์€ ๋งค์šฐ ์–ด๋ ต๋‹ค.
  • ๊ณผ๊ฑฐ ๋ฐ์ดํ„ฐ ํŒจํ„ด์„ ํ™œ์šฉํ•œ๋‹ค๊ณ  ํ•ด๋„ ์‹ค์ œ ๋‹น์ฒจ ๋ฒˆํ˜ธ์™€์˜ ์ผ์น˜์œจ์€ ๋‚ฎ๋‹ค.
  • ๋‹จ์ˆœ ํ™•๋ฅ  ๊ธฐ๋ฐ˜ ์ ‘๊ทผ๋ณด๋‹ค, ์ถ”์ฒจ ํŒจํ„ด์— ๋Œ€ํ•œ ์‹ฌ์ธต ๋ถ„์„์ด ํ•„์š”ํ•˜๋‹ค.

๊ฐœ์„  ๋ฐฉํ–ฅ

  1. ๋” ๋‹ค์–‘ํ•œ ํ”ผ์ฒ˜ ์ถ”๊ฐ€
    • ํ˜„์žฌ๋Š” ์ตœ๊ทผ 10ํšŒ ๋ฐ์ดํ„ฐ๋งŒ ํ™œ์šฉํ–ˆ์ง€๋งŒ, ๋” ๊ธด ๊ธฐ๊ฐ„์˜ ํŒจํ„ด์„ ๋ฐ˜์˜ํ•˜๋Š” ๋ฐฉ์‹์„ ๊ณ ๋ คํ•  ์ˆ˜ ์žˆ๋‹ค.
    • ์˜ˆ๋ฅผ ๋“ค์–ด, ํŠน์ • ๋ฒˆํ˜ธ๊ฐ€ ๋‚˜์˜จ ์ดํ›„ ๋‹ค์Œ ํšŒ์ฐจ์—์„œ ๋“ฑ์žฅํ•  ํ™•๋ฅ  ๋“ฑ์„ ๋ถ„์„ํ•  ์ˆ˜ ์žˆ๋‹ค.
  2. ๋‹ค์–‘ํ•œ ๋ชจ๋ธ ์กฐํ•ฉ
    • CNN(Convolutional Neural Network) ๋˜๋Š” Transformer ๋ชจ๋ธ์„ ์ ์šฉํ•˜์—ฌ ๋” ์ •๊ตํ•œ ํŒจํ„ด ํ•™์Šต์„ ์‹œ๋„ํ•  ์ˆ˜ ์žˆ๋‹ค.

6. ๋กœ๋˜ ๋ฒˆํ˜ธ ์˜ˆ์ธก, ๊ณผ์—ฐ ๊ฐ€๋Šฅํ• ๊นŒ?


  • ๋จธ์‹ ๋Ÿฌ๋‹์„ ํ™œ์šฉํ•œ ๋กœ๋˜ ๋ฒˆํ˜ธ ์˜ˆ์ธก์€ ๋‹จ์ˆœํ•œ ๋žœ๋ค ์„ ํƒ๋ณด๋‹ค ์ผ๋ถ€ ํ™•๋ฅ ์„ ๊ณ ๋ คํ•  ์ˆ˜ ์žˆ๋Š” ์žฅ์ ์ด ์žˆ์ง€๋งŒ, ์™„๋ฒฝํ•œ ์˜ˆ์ธก์€ ์‚ฌ์‹ค์ƒ ๋ถˆ๊ฐ€๋Šฅ์— ๊ฐ€๊น๋‹ค.
  • ๋‹ค๋งŒ, ํŠน์ • ํŒจํ„ด์„ ๋ถ„์„ํ•˜๊ณ  ํ™œ์šฉํ•˜๋Š” ์—ฐ๊ตฌ๋Š” ์˜๋ฏธ๊ฐ€ ์žˆ์„ ์ˆ˜ ์žˆ์œผ๋ฉฐ, ์žฅ๊ธฐ์ ์ธ ๋ถ„์„์„ ํ†ตํ•ด ์ผ๋ถ€ ์œ ์˜๋ฏธํ•œ ๊ฒฝํ–ฅ์„ ์ฐพ์„ ์ˆ˜๋„ ์žˆ๋‹ค.

โžก ๋กœ๋˜ ๋ฒˆํ˜ธ ์˜ˆ์ธก์€ ๋‹จ์ˆœํ•œ ํ™•๋ฅ  ๊ฒŒ์ž„์ด์ง€๋งŒ, ๋จธ์‹ ๋Ÿฌ๋‹์„ ํ™œ์šฉํ•œ ๋‹ค์–‘ํ•œ ํŒจํ„ด ๋ถ„์„์„ ํ†ตํ•ด ๋”์šฑ ์ •๊ตํ•œ ์ „๋žต์„ ๋งŒ๋“ค์–ด๋ณผ ์ˆ˜ ์žˆ์„ ๊ฒƒ์ด๋‹ค.

๋ฐ˜์‘ํ˜•