728x90
๋ฐ˜์‘ํ˜•

2025/02 112

[Learn][Korean] The Meaning and Usage of "์ƒˆํ•ด ๋ณต ๋งŽ์ด ๋ฐ›์œผ์„ธ์š”."

In Korea, one of the most commonly heard phrases during the New Year is "์ƒˆํ•ด ๋ณต ๋งŽ์ด ๋ฐ›์œผ์„ธ์š”." If you're learning Korean, understanding this phrase and when to use it will help you communicate more naturally during Korean New Year celebrations.1. Meaning of "์ƒˆํ•ด ๋ณต ๋งŽ์ด ๋ฐ›์œผ์„ธ์š”."This phrase can be broken down as follows:์ƒˆํ•ด (saehae) → "New Year"๋ณต (bok) → "Good fortune" or "Blessings"๋งŽ์ด ๋ฐ›์œผ์„ธ์š” (mani badeuseyo) → ..

[Learn][English] "I’m boring." vs. "I’m bored." ์ฐจ์ด ์ •๋ฆฌ

์˜์–ด๋ฅผ ๋ฐฐ์šธ ๋•Œ ํ—ท๊ฐˆ๋ฆฌ๋Š” ํ‘œํ˜„ ์ค‘ ํ•˜๋‚˜๊ฐ€ "I’m boring." ๊ณผ "I’m bored." ์ด๋‹ค. ํ•œ๊ตญ์–ด๋กœ ์ง์—ญํ•˜๋ฉด ๋‘˜ ๋‹ค "๋‚˜๋Š” ์ง€๋ฃจํ•˜๋‹ค"์ฒ˜๋Ÿผ ๋ณด์ด์ง€๋งŒ, ์‹ค์ œ ์˜๋ฏธ๋Š” ํฌ๊ฒŒ ๋‹ค๋ฅด๋‹ค. ์ด ๋‘ ํ‘œํ˜„์˜ ์ฐจ์ด๋ฅผ ํ™•์‹คํ•˜๊ฒŒ ์ดํ•ดํ•˜๊ณ , ์ž์—ฐ์Šค๋Ÿฝ๊ฒŒ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ๋„๋ก ์ •๋ฆฌํ•ด๋ณด๊ฒ ๋‹ค.1. "I’m bored." → (๋‚˜๋Š”) ์ง€๋ฃจํ•ด!โœ… ๋œป: ์ง€๋ฃจํ•จ์„ ๋Š๋ผ๋Š” ์ƒํƒœโœ… ์„ค๋ช…: ๋‚ด๊ฐ€ ์ง€๊ธˆ ๋”ฐ๋ถ„ํ•˜๊ฑฐ๋‚˜ ์ง€๋ฃจํ•œ ์ƒํƒœ๋ผ๋Š” ๋œป. ๊ฐ์ •์„ ํ‘œํ˜„ํ•˜๋Š” ํ‘œํ˜„์ž„โœ… ๋ฌธ๋ฒ•: "bored"๋Š” ๊ฐ์ •์„ ๋‚˜ํƒ€๋‚ด๋Š” ๋ถ„์‚ฌ(past participle)๋กœ ์‚ฌ์šฉ๋จ์˜ˆ๋ฌธ:I’m bored. (๋‚˜ ์ง€๊ธˆ ์ง€๋ฃจํ•ด.)She looks bored in the meeting. (๊ทธ๋…€๋Š” ํšŒ์˜์—์„œ ์ง€๋ฃจํ•ด ๋ณด์ธ๋‹ค.)The students were bored during the lectu..

[Python][numpy] Numpy๋กœ ํšจ์œจ์ ์ธ ๋ฐ์ดํ„ฐ ์ƒ˜ํ”Œ๋ง ๋ฐ ๋‚œ์ˆ˜ ์ƒ์„ฑ

๋ฐ์ดํ„ฐ ๋ถ„์„ ๋ฐ ๋จธ์‹ ๋Ÿฌ๋‹์—์„œ๋Š” ๋‚œ์ˆ˜(random number) ์ƒ์„ฑ๊ณผ ์ƒ˜ํ”Œ๋ง(sampling)์ด ์ž์ฃผ ์‚ฌ์šฉ๋œ๋‹ค. Numpy์˜ np.random ๋ชจ๋“ˆ์„ ํ™œ์šฉํ•˜๋ฉด ๋‹ค์–‘ํ•œ ํ™•๋ฅ  ๋ถ„ํฌ์—์„œ ๋‚œ์ˆ˜๋ฅผ ์ƒ์„ฑํ•˜๊ณ  ๋ฐ์ดํ„ฐ๋ฅผ ์ƒ˜ํ”Œ๋งํ•  ์ˆ˜ ์žˆ๋‹ค.1. ๋‚œ์ˆ˜ ์ƒ์„ฑ์˜ ๊ธฐ๋ณธ1.1 ๊ท ๋“ฑ ๋ถ„ํฌ ๋‚œ์ˆ˜ ์ƒ์„ฑ๊ท ๋“ฑ ๋ถ„ํฌ์—์„œ ๋‚œ์ˆ˜๋ฅผ ์ƒ์„ฑํ•˜๋ ค๋ฉด np.random.rand() ๋˜๋Š” np.random.uniform()์„ ์‚ฌ์šฉํ•˜๋ฉด ๋จimport numpy as np# 0๊ณผ 1 ์‚ฌ์ด์˜ ๋‚œ์ˆ˜ 5๊ฐœ ์ƒ์„ฑrandom_numbers = np.random.rand(5)print(random_numbers)# [0.68210576 0.42857438 0.15101299 0.54555321 0.02568058]# ํŠน์ • ๋ฒ”์œ„(์˜ˆ: 10~20)์—์„œ ๊ท ๋“ฑ ๋ถ„ํฌ ๋‚œ์ˆ˜ 5๊ฐœ..

[Supplement][Docker] ๋„์ปค ์ด๋ฏธ์ง€ ๋นŒ๋“œ ๋ฐ ๊ด€๋ฆฌ

๋„์ปค ์ด๋ฏธ์ง€๋Š” ์ปจํ…Œ์ด๋„ˆ ์‹คํ–‰์— ํ•„์š”ํ•œ ๋ชจ๋“  ์š”์†Œ(์• ํ”Œ๋ฆฌ์ผ€์ด์…˜, ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ, ํ™˜๊ฒฝ ์„ค์ • ๋“ฑ)๋ฅผ ํฌํ•จํ•˜๋Š” ์ฝ๊ธฐ ์ „์šฉ ํ…œํ”Œ๋ฆฟ์ด๋‹ค. ์ด๋ฅผ ํšจ์œจ์ ์œผ๋กœ ๋นŒ๋“œํ•˜๊ณ  ๊ด€๋ฆฌํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์ •๋ฆฌํ•œ๋‹ค.1. ๋„์ปค ์ด๋ฏธ์ง€ ๋นŒ๋“œ1.1 ๋„์ปคํŒŒ์ผ(Dockerfile) ์ž‘์„ฑ๋„์ปค ์ด๋ฏธ์ง€๋Š” Dockerfile์„ ๊ธฐ๋ฐ˜์œผ๋กœ ์ƒ์„ฑ๋จ ๊ธฐ๋ณธ์ ์ธ Dockerfile ์˜ˆ์‹œ๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™์Œ:# ๋ฒ ์ด์Šค ์ด๋ฏธ์ง€ ์„ค์ •FROM python:3.9# ์ž‘์—… ๋””๋ ‰ํ„ฐ๋ฆฌ ์„ค์ •WORKDIR /app# ํ•„์š” ํŒจํ‚ค์ง€ ๋ณต์‚ฌ ๋ฐ ์„ค์น˜COPY requirements.txt .RUN pip install -r requirements.txt# ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜ ๋ณต์‚ฌCOPY . .# ์‹คํ–‰ ๋ช…๋ น์–ด ์„ค์ •CMD ["python", "app.py"]1.2 ๋„์ปค ์ด๋ฏธ์ง€ ๋นŒ๋“œ์œ„ Dockerfile์„ ๊ธฐ๋ฐ˜์œผ..

[Python][numpy] Numpy ๋ฐฐ์—ด ์ €์žฅ ๋ฐ ๋ถˆ๋Ÿฌ์˜ค๊ธฐ

Numpy๋Š” ๋ฐ์ดํ„ฐ๋ฅผ ์ €์žฅํ•˜๊ณ  ๋‹ค์‹œ ๋ถˆ๋Ÿฌ์˜ค๋Š” ๋‹ค์–‘ํ•œ ๋ฐฉ๋ฒ•์„ ์ œ๊ณตํ•œ๋‹ค. ์ด ๊ธ€์—์„œ๋Š” Numpy ๋ฐฐ์—ด์„ ํŒŒ์ผ๋กœ ์ €์žฅํ•˜๊ณ , ๋‹ค์‹œ ๋ถˆ๋Ÿฌ์˜ค๋Š” ๋ฐฉ๋ฒ•์„ ์ •๋ฆฌํ•œ๋‹ค.1. Numpy ๋ฐฐ์—ด ์ €์žฅํ•˜๊ธฐNumpy ๋ฐฐ์—ด์€ ๋‹ค์–‘ํ•œ ํฌ๋งท์œผ๋กœ ์ €์žฅ ๊ฐ€๋Šฅํ•˜๋ฉฐ, ์—ฌ๊ธฐ์„œ๋Š” .npy, .npz, .csv ํฌ๋งท์„ ๋‹ค๋ฃฐ ๊ฒƒ์ž„1.1 .npy ํฌ๋งท์œผ๋กœ ์ €์žฅ.npy ํŒŒ์ผ์€ Numpy์˜ ๊ธฐ๋ณธ์ ์ธ ๋ฐ”์ด๋„ˆ๋ฆฌ ์ €์žฅ ํฌ๋งท์œผ๋กœ, ๋ฐฐ์—ด์˜ ๊ตฌ์กฐ๋ฅผ ๊ทธ๋Œ€๋กœ ์œ ์ง€ํ•˜๋ฉด์„œ ์ €์žฅํ•  ์ˆ˜ ์žˆ์Œimport numpy as nparr = np.array([1, 2, 3, 4, 5])np.save("array.npy", arr)1.2 .npz ํฌ๋งท์œผ๋กœ ์—ฌ๋Ÿฌ ๋ฐฐ์—ด ์ €์žฅ.npz ํŒŒ์ผ์€ ์—ฌ๋Ÿฌ ๊ฐœ์˜ ๋ฐฐ์—ด์„ ํ•œ ๋ฒˆ์— ์ €์žฅํ•  ์ˆ˜ ์žˆ๋Š” ์••์ถ•๋œ Numpy ํฌ๋งท์ž„x = np.arange(10)y = ..

[Python][numpy] Numpy ๊ธฐ์ดˆ๋ถ€ํ„ฐ ํ™œ์šฉ๊นŒ์ง€

Python์—์„œ ๋ฐ์ดํ„ฐ๋ฅผ ๋‹ค๋ฃฐ ๋•Œ ํ•„์ˆ˜์ ์œผ๋กœ ์‚ฌ์šฉ๋˜๋Š” ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ ์ค‘ ํ•˜๋‚˜๊ฐ€ Numpy์ด๋‹ค. ๋Œ€๊ทœ๋ชจ ๋ฐฐ์—ด ๋ฐ ํ–‰๋ ฌ ์—ฐ์‚ฐ์„ ๋น ๋ฅด๊ฒŒ ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ๋„๋ก ์„ค๊ณ„๋˜์—ˆ์œผ๋ฉฐ, ๊ณผํ•™ ์—ฐ์‚ฐ, ๋จธ์‹ ๋Ÿฌ๋‹, ๋ฐ์ดํ„ฐ ๋ถ„์„ ๋“ฑ์— ํญ๋„“๊ฒŒ ์‚ฌ์šฉ๋œ๋‹ค.1. Numpy๋ž€?Numpy(NumPy, Numerical Python)๋Š” ๋‹ค์ฐจ์› ๋ฐฐ์—ด ๊ฐ์ฒด(ndarray)๋ฅผ ์ง€์›ํ•˜๋ฉฐ, ์ด๋ฅผ ํšจ์œจ์ ์œผ๋กœ ์—ฐ์‚ฐํ•  ์ˆ˜ ์žˆ๋Š” ๋‹ค์–‘ํ•œ ๊ธฐ๋Šฅ์„ ์ œ๊ณตํ•จPython์˜ ๊ธฐ๋ณธ ๋ฆฌ์ŠคํŠธ(list)๋ณด๋‹ค ๋น ๋ฅด๊ณ , ๋ฉ”๋ชจ๋ฆฌ๋ฅผ ํšจ์œจ์ ์œผ๋กœ ์‚ฌ์šฉํ•จNumpy์˜ ํŠน์ง•๊ณ ์† ์—ฐ์‚ฐ: C ์–ธ์–ด๋กœ ๊ตฌํ˜„๋˜์–ด ์žˆ์–ด ๋ฆฌ์ŠคํŠธ๋ณด๋‹ค ๋น ๋ฆ„๋‹ค์ฐจ์› ๋ฐฐ์—ด ์ง€์›: ๋ฒกํ„ฐ, ํ–‰๋ ฌ ์—ฐ์‚ฐ์„ ์‰ฝ๊ฒŒ ์ˆ˜ํ–‰ ๊ฐ€๋Šฅ๋ฐฉ๋Œ€ํ•œ ์ˆ˜ํ•™ ๋ฐ ์„ ํ˜•๋Œ€์ˆ˜ ์—ฐ์‚ฐ ๊ธฐ๋Šฅ: ๋‹ค์–‘ํ•œ ํ•จ์ˆ˜ ์ œ๊ณต๋‹ค๋ฅธ ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ์™€์˜ ํ˜ธํ™˜์„ฑ: Pandas, SciPy, TensorFlo..

[Supplement][Docker] Docker ๊ฐœ๋… ์ •๋ฆฌ

๋„์ปค(Docker)๋ž€?๋„์ปค(Docker)๋Š” ์ปจํ…Œ์ด๋„ˆ ๊ธฐ๋ฐ˜์˜ ๊ฐ€์ƒํ™” ๊ธฐ์ˆ ๋กœ, ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜๊ณผ ๊ทธ ์‹คํ–‰ ํ™˜๊ฒฝ์„ ์ปจํ…Œ์ด๋„ˆ๋ผ๋Š” ๋‹จ์œ„๋กœ ํŒจํ‚ค์ง•ํ•˜์—ฌ ์–ด๋””์„œ๋“  ์‹คํ–‰ํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•ด์ฃผ๋Š” ํ”Œ๋žซํผ์ด๋‹ค. ๊ธฐ์กด์˜ ๊ฐ€์ƒ ๋จธ์‹ (VM)๊ณผ ๋‹ฌ๋ฆฌ ์šด์˜์ฒด์ œ ์ „์ฒด๋ฅผ ๊ฐ€์ƒํ™”ํ•˜์ง€ ์•Š๊ณ , ํ˜ธ์ŠคํŠธ OS์˜ ์ปค๋„์„ ๊ณต์œ ํ•˜๋ฉด์„œ ๋…๋ฆฝ๋œ ํ™˜๊ฒฝ์„ ์ œ๊ณตํ•˜๋Š” ๊ฒƒ์ด ํŠน์ง•์ด๋‹ค.๋„์ปค์˜ ์ฃผ์š” ๊ฐœ๋…1. ์ปจํ…Œ์ด๋„ˆ(Container)์ปจํ…Œ์ด๋„ˆ๋Š” ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜๊ณผ ๊ทธ ์‹คํ–‰ ํ™˜๊ฒฝ์„ ํฌํ•จํ•˜๋Š” ๋…๋ฆฝ์ ์ธ ๋‹จ์œ„๋กœ, ์‹คํ–‰์— ํ•„์š”ํ•œ ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ์™€ ์˜์กด์„ฑ์„ ํ•จ๊ป˜ ํŒจํ‚ค์ง•ํ•˜์—ฌ ์ผ๊ด€๋œ ํ™˜๊ฒฝ์—์„œ ์‹คํ–‰ํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•จ2. ์ด๋ฏธ์ง€(Image)์ด๋ฏธ์ง€๋Š” ์ปจํ…Œ์ด๋„ˆ๋ฅผ ์ƒ์„ฑํ•˜๋Š” ๋ฐ ํ•„์š”ํ•œ ๋ชจ๋“  ์š”์†Œ(์• ํ”Œ๋ฆฌ์ผ€์ด์…˜, ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ, ์„ค์ • ํŒŒ์ผ ๋“ฑ)๋ฅผ ํฌํ•จํ•˜๋Š” ์ฝ๊ธฐ ์ „์šฉ ํ…œํ”Œ๋ฆฟ์ž„์ปจํ…Œ์ด๋„ˆ๋Š” ์ด๋ฏธ์ง€๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ์ƒ์„ฑ๋จ3. ๋„์ปคํŒŒ..

[DSLR][๊ฐœ๋…] ์ดฌ์˜ ๊ด€๋ จ ํ•„์ˆ˜ ์šฉ์–ด ์ •๋ฆฌ

1. ํ”ผ์‚ฌ์ฒด (Subject)์นด๋ฉ”๋ผ๋กœ ์ดฌ์˜ํ•˜๋Š” ๋Œ€์ƒ์ธ๋ฌผ, ํ’๊ฒฝ, ๋™๋ฌผ, ์‚ฌ๋ฌผ ๋“ฑ ๋‹ค์–‘ํ•œ ํ˜•ํƒœ๊ฐ€ ์กด์žฌํ•จํ”ผ์‚ฌ์ฒด์˜ ์œ„์น˜์™€ ๋ฐฐ์น˜์— ๋”ฐ๋ผ ์‚ฌ์ง„์˜ ๋Š๋‚Œ์ด ๋‹ฌ๋ผ์ง2. ํ”„๋ ˆ์ž„ (Frame)์นด๋ฉ”๋ผ ํ™”๋ฉด ์•ˆ์— ํฌํ•จ๋˜๋Š” ์˜์—ญ์–ด๋–ค ํ”ผ์‚ฌ์ฒด๋ฅผ ํฌํ•จํ•˜๊ณ , ์–ด๋–ค ๋ถ€๋ถ„์„ ์ œ์™ธํ• ์ง€๋ฅผ ๊ฒฐ์ •ํ•˜๋Š” ์š”์†Œ3. ๊ตฌ๋„ (Composition)์‚ฌ์ง„์˜ ์ „์ฒด์ ์ธ ๋ฐฐ์น˜์™€ ๊ท ํ˜•๋Œ€ํ‘œ์ ์ธ ๊ตฌ๋„ ๊ธฐ๋ฒ•:์‚ผ๋“ฑ๋ถ„๋ฒ• (Rule of Thirds): ํ™”๋ฉด์„ ๊ฐ€๋กœ, ์„ธ๋กœ 3๋“ฑ๋ถ„ํ•œ ํ›„ ๊ต์ฐจ ์ง€์ ์— ํ”ผ์‚ฌ์ฒด ๋ฐฐ์น˜๋Œ€๊ฐ์„  ๊ตฌ๋„ (Diagonal Composition): ์‚ฌ์„  ํ˜•ํƒœ๋กœ ํ”ผ์‚ฌ์ฒด ๋ฐฐ์น˜ํ•˜์—ฌ ๋™์ ์ธ ๋Š๋‚Œ ๊ฐ•์กฐ์ค‘์‹ฌ ๊ตฌ๋„ (Central Composition): ํ”ผ์‚ฌ์ฒด๋ฅผ ์ค‘์•™์— ๋ฐฐ์น˜ํ•˜์—ฌ ๊ฐ•ํ•œ ์ง‘์ค‘ ํšจ๊ณผ ์œ ๋„๋Œ€์นญ ๊ตฌ๋„ (Symmetry Composition): ์ขŒ์šฐ๋‚˜ ์ƒํ•˜ ๋Œ€์นญ์„ ..

[DSLR][์ €์žฅํ˜•์‹] DSLR ์ดฌ์˜ ๋ฐ์ดํ„ฐ ์ €์žฅ ํ˜•์‹ ์ •๋ฆฌ

DSLR ์นด๋ฉ”๋ผ๋Š” ์ดฌ์˜๋œ ์ด๋ฏธ์ง€๋ฅผ ๋‹ค์–‘ํ•œ ํŒŒ์ผ ํ˜•์‹์œผ๋กœ ์ €์žฅํ•  ์ˆ˜ ์žˆ๋‹ค. ๋Œ€ํ‘œ์ ์ธ ์ €์žฅ ํ˜•์‹์œผ๋กœ RAW, JPEG, TIFF ๋“ฑ์ด ์žˆ๋‹ค.์ฃผ์š” ์ €์žฅ ํ˜•์‹ ๊ฐœ์š”RAW ํŒŒ์ผ (๋ฌด์†์‹ค ์›๋ณธ ๋ฐ์ดํ„ฐ)๊ฐœ๋…:์นด๋ฉ”๋ผ ์„ผ์„œ๊ฐ€ ์ดฌ์˜ํ•œ ์›๋ณธ ๋ฐ์ดํ„ฐ๋ฅผ ๊ทธ๋Œ€๋กœ ์ €์žฅํ•˜๋Š” ํ˜•์‹์••์ถ• ์—†์Œ ๋˜๋Š” ๋ฌด์†์‹ค ์••์ถ•์„ ์‚ฌ์šฉํ•˜์—ฌ ์ƒ‰์ƒ ์ •๋ณด์™€ ๋””ํ…Œ์ผ์„ ์ตœ๋Œ€ํ•œ ๋ณด์กดDSLR ์ œ์กฐ์‚ฌ๋งˆ๋‹ค RAW ํŒŒ์ผ ํ™•์žฅ์ž๊ฐ€ ๋‹ค๋ฆ„Canon: .CR2, .CR3Nikon: .NEFSony: .ARWFujifilm: .RAFPanasonic: .RW2์žฅ์ :๋†’์€ ํ™”์งˆ๊ณผ ํ’๋ถ€ํ•œ ์ƒ‰์ƒ ์ •๋ณด ๋ณด์กดํ›„๋ณด์ • ์‹œ ๋ฐ๊ธฐ, ์ƒ‰์˜จ๋„, ๋…ธ์ถœ ๋“ฑ์„ ์ž์œ ๋กญ๊ฒŒ ์กฐ์ ˆ ๊ฐ€๋Šฅ๊ณ ํ•ด์ƒ๋„ ์ด๋ฏธ์ง€ ์ž‘์—…์— ์ ํ•ฉ๋‹จ์ :ํŒŒ์ผ ํฌ๊ธฐ๊ฐ€ ์ปค์„œ ์ €์žฅ ๊ณต๊ฐ„์„ ๋งŽ์ด ์ฐจ์ง€ํ•จ์ „์šฉ ํ”„๋กœ๊ทธ๋žจ(Adobe Lightroom, Photosh..

[DSLR][๊ฐœ๋…] ์šฉ์–ด ์ •๋ฆฌ

DSLR ํ•„์ˆ˜ ์šฉ์–ด ๋ฐ ๊ฐœ๋… ์ •๋ฆฌDSLR ์นด๋ฉ”๋ผ๋ฅผ ์ฒ˜์Œ ์ ‘ํ•˜๊ฑฐ๋‚˜ ์ดฌ์˜ ๊ธฐ๋ฒ•์„ ์ตํžˆ๋ ค๋Š” ์‚ฌ์šฉ์ž๋“ค์„ ์œ„ํ•ด ํ•„์ˆ˜์ ์ธ ์šฉ์–ด์™€ ๊ฐœ๋…์„ ์ •๋ฆฌํ•œ๋‹ค.๋ฏธ๋Ÿฌ๋ฆฌ์Šค (Mirrorless Camera)๊ธฐ์กด DSLR๊ณผ ๋‹ฌ๋ฆฌ ๋‚ด๋ถ€ ๊ฑฐ์šธ์ด ์—†๋Š” ๊ตฌ์กฐ๋ฏธ๋Ÿฌ๋ฆฌ์Šค ์นด๋ฉ”๋ผ๊ฐ€ ๋ฐ˜๋“œ์‹œ ์ „์ž์‹ ๋ทฐํŒŒ์ธ๋”(EVF)๋ฅผ ์‚ฌ์šฉํ•˜๋Š” ๊ฒƒ์€ ์•„๋‹˜. ์ผ๋ถ€ ๋ชจ๋ธ์€ ๊ด‘ํ•™์‹ ๋ทฐํŒŒ์ธ๋”(OVF)๋ฅผ ์ฑ„ํƒํ•˜๊ธฐ๋„ ํ•จ์„ผ์„œ ํฌ๊ธฐ (Sensor Size)ํ’€ํ”„๋ ˆ์ž„ (Full-frame) > ํฌ๋กญ ์„ผ์„œ (APS-C) > ๋งˆ์ดํฌ๋กœ ํฌ์„œ๋“œ (Micro Four Thirds) > 1์ธ์น˜ ์„ผ์„œ ๋“ฑ์„ผ์„œ ํฌ๊ธฐ๊ฐ€ ํด์ˆ˜๋ก ์ผ๋ฐ˜์ ์œผ๋กœ ํ™”์งˆ์ด ์ข‹๊ณ  ์‹ฌ๋„ ํ‘œํ˜„์— ์œ ๋ฆฌํ•˜์ง€๋งŒ, ๋ Œ์ฆˆ์™€ ์ด๋ฏธ์ง€ ์ฒ˜๋ฆฌ ๊ธฐ์ˆ ๋„ ์ค‘์š”ํ•œ ์˜ํ–ฅ์„ ๋ฏธ์นจ์…”ํ„ฐ ์†๋„ (Shutter Speed)์…”ํ„ฐ๊ฐ€ ์—ด๋ ค ์žˆ๋Š” ์‹œ๊ฐ„์œผ๋กœ ๋‹จ์œ„๋Š” ์ดˆ(s) ๋˜๋Š” ..

[Python][AI] ํƒ์ƒ‰์  ๋ฐ์ดํ„ฐ ๋ถ„์„(EDA) - ์™€์ธ ํ’ˆ์งˆ ๋ฐ์ดํ„ฐ์…‹ (Wine Quality Dataset) - 4

2025.01.23 - [๊ฐœ๋ฐœ Code/์ธ๊ณต์ง€๋Šฅ A.I.] - [Python][AI] ํƒ์ƒ‰์  ๋ฐ์ดํ„ฐ ๋ถ„์„(EDA) - ์™€์ธ ํ’ˆ์งˆ ๋ฐ์ดํ„ฐ์…‹ (Wine Quality Dataset) - 12025.01.24 - [๊ฐœ๋ฐœ Code/์ธ๊ณต์ง€๋Šฅ A.I.] - [Python][AI] ํƒ์ƒ‰์  ๋ฐ์ดํ„ฐ ๋ถ„์„(EDA) - ์™€์ธ ํ’ˆ์งˆ ๋ฐ์ดํ„ฐ์…‹ (Wine Quality Dataset) - 22025.02.04 - [๊ฐœ๋ฐœ Code/์ธ๊ณต์ง€๋Šฅ A.I.] - [Python][AI] ํƒ์ƒ‰์  ๋ฐ์ดํ„ฐ ๋ถ„์„(EDA) - ์™€์ธ ํ’ˆ์งˆ ๋ฐ์ดํ„ฐ์…‹ (Wine Quality Dataset) - 31. ๋“ค์–ด๊ฐ€๋ฉฐ์ด๋ฒˆ ๊ธ€์—์„œ๋Š” XGBoost ํšŒ๊ท€ ๋ชจ๋ธ์„ ํ™œ์šฉํ•˜์—ฌ ์™€์ธ์˜ ํ’ˆ์งˆ์„ ์˜ˆ์ธกํ•˜๊ณ , ๋‹ค์–‘ํ•œ ๊ธฐ๋ฒ•์„ ์ ์šฉํ•˜์—ฌ ์„ฑ๋Šฅ์„ ๋น„๊ตํ•ด๋ณด๊ฒ ๋‹ค.๋‹จ์ˆœํ•œ XGBoost ๋ชจ๋ธ์„ ..

[Python][AI] ํƒ์ƒ‰์  ๋ฐ์ดํ„ฐ ๋ถ„์„(EDA) - ์™€์ธ ํ’ˆ์งˆ ๋ฐ์ดํ„ฐ์…‹ (Wine Quality Dataset) - 3

2025.01.23 - [๊ฐœ๋ฐœ Code/์ธ๊ณต์ง€๋Šฅ A.I.] - [Python][AI] ํƒ์ƒ‰์  ๋ฐ์ดํ„ฐ ๋ถ„์„(EDA) - ์™€์ธ ํ’ˆ์งˆ ๋ฐ์ดํ„ฐ์…‹ (Wine Quality Dataset) - 12025.01.24 - [๊ฐœ๋ฐœ Code/์ธ๊ณต์ง€๋Šฅ A.I.] - [Python][AI] ํƒ์ƒ‰์  ๋ฐ์ดํ„ฐ ๋ถ„์„(EDA) - ์™€์ธ ํ’ˆ์งˆ ๋ฐ์ดํ„ฐ์…‹ (Wine Quality Dataset) - 2๋ฐ์ดํ„ฐ ์‹œ๊ฐํ™”๋ณ€์ˆ˜ ๊ฐ„์˜ ๊ด€๊ณ„๋ฅผ ์‹œ๊ฐํ™”ํ•˜์—ฌ ํŒจํ„ด์„ ํŒŒ์•…ํ•˜๋„๋ก ํ•œ๋‹ค.  ํ’ˆ์งˆ ๋ถ„ํฌ ๋ฐ ๋ณ€์ˆ˜ ๊ฐ„ ์ƒ๊ด€ ๊ด€๊ณ„(Correlation Heatmap)# Library Version# pandas : 2.2.3# numpy : 1.23.5# matplotlib: 3.9.2# seaborn : 0.13.2import matplotlib.py..

728x90
๋ฐ˜์‘ํ˜•