๊ฐœ๋ฐœ Code/์ธ๊ณต์ง€๋Šฅ A.I.

[Python][AI] ํƒ์ƒ‰์  ๋ฐ์ดํ„ฐ ๋ถ„์„(EDA) - ์™€์ธ ํ’ˆ์งˆ ๋ฐ์ดํ„ฐ์…‹ (Wine Quality Dataset) - 2

5hr1rnp 2025. 1. 24. 13:22
๋ฐ˜์‘ํ˜•

 

2025.01.23 - [๊ฐœ๋ฐœ Code/์ธ๊ณต์ง€๋Šฅ A.I.] - [Python][AI] ํƒ์ƒ‰์  ๋ฐ์ดํ„ฐ ๋ถ„์„(EDA) - ์™€์ธ ํ’ˆ์งˆ ๋ฐ์ดํ„ฐ์…‹ (Wine Quality Dataset) - 1

 

[Python][AI] ํƒ์ƒ‰์  ๋ฐ์ดํ„ฐ ๋ถ„์„(EDA) - ์™€์ธ ํ’ˆ์งˆ ๋ฐ์ดํ„ฐ์…‹ (Wine Quality Dataset) - 1

ํƒ์ƒ‰์  ๋ฐ์ดํ„ฐ ๋ถ„์„(EDA, Exploratory Data Analysis)๋Š” ๋ฐ์ดํ„ฐ ๋ถ„์„์˜ ์ฒซ ๋‹จ๊ณ„๋กœ, ๋ฐ์ดํ„ฐ๋ฅผ ์‹œ๊ฐ์ ์œผ๋กœ ํƒ์ƒ‰ํ•˜๊ณ  ์š”์•ฝ ํ†ต๊ณ„๋ฅผ ํ™•์ธํ•˜๋ฉฐ ๋ฐ์ดํ„ฐ์˜ ํŠน์„ฑ๊ณผ ํŒจํ„ด์„ ํŒŒ์•…ํ•˜๋Š” ๊ณผ์ •์ด๋‹ค.. ์ด๋ฒˆ ๊ธ€์—์„œ๋Š” ์™€์ธ

5hr1rnp.tistory.com

 

  ์ด์ „ ์ž‘์—…์— ์ด์–ด์„œ ๋ฐ์ดํ„ฐ๋ฅผ ๋ถˆ๋Ÿฌ์˜จ ๋’ค ๊ธฐ๋ณธ ์ •๋ณด ๋ฐ ์š”์•ฝ ํ†ต๊ณ„๋ฅผ ํ™•์ธํ•˜๋Š” ์ž‘์—…์„ ์ง„ํ–‰ํ•˜๊ฒ ๋‹ค.


๋ฐ์ดํ„ฐ ๋ถˆ๋Ÿฌ์˜ค๊ธฐ


# Library Version
# pandas    : 2.2.1
# numpy     : 1.26.4
# matplotlib: 3.9.2

# library import
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

# data load
# CSV ํŒŒ์ผ ๊ฒฝ๋กœ ์„ค์ •
red_wine_path = './wine+quality/winequality-red.csv'
white_wine_path = './wine+quality/winequality-white.csv'

# CSV ํŒŒ์ผ ๋ถˆ๋Ÿฌ์˜ค๊ธฐ
red_wine = pd.read_csv(red_wine_path, sep=';')
white_wine = pd.read_csv(white_wine_path, sep=';')

# ๋ถˆ๋Ÿฌ์˜จ data ํ™•์ธ
red_wine.head()
#	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	pH	sulphates	alcohol	quality
# 0	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4	5
# 1	7.8	0.88	0.00	2.6	0.098	25.0	67.0	0.9968	3.20	0.68	9.8	5
# 2	7.8	0.76	0.04	2.3	0.092	15.0	54.0	0.9970	3.26	0.65	9.8	5
# 3	11.2	0.28	0.56	1.9	0.075	17.0	60.0	0.9980	3.16	0.58	9.8	6
# 4	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4	5

white_wine.head()
#	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	pH	sulphates	alcohol	quality
# 0	7.0	0.27	0.36	20.7	0.045	45.0	170.0	1.0010	3.00	0.45	8.8	6
# 1	6.3	0.30	0.34	1.6	0.049	14.0	132.0	0.9940	3.30	0.49	9.5	6
# 2	8.1	0.28	0.40	6.9	0.050	30.0	97.0	0.9951	3.26	0.44	10.1	6
# 3	7.2	0.23	0.32	8.5	0.058	47.0	186.0	0.9956	3.19	0.40	9.9	6
# 4	7.2	0.23	0.32	8.5	0.058	47.0	186.0	0.9956	3.19	0.40	9.9	6

 

  CSV ํ˜•์‹์˜ ํŒŒ์ผ์ด์ง€๋งŒ ๋ฐ์ดํ„ฐ๋ฅผ ํ™•์ธํ•ด๋ณด๋ฉด ' ; '๋กœ ๋ถ„๋ฆฌ๋œ๊ฑธ ํ™•์ธํ•  ์ˆ˜ ์žˆ๋‹ค. ๊ทธ๋ž˜์„œ read_csv() ํŒŒ๋ผ๋ฏธํ„ฐ๋กœ sep=';'๋ฅผ ์ž…๋ ฅํ•ด์„œ ๋ถˆ๋Ÿฌ์˜จ๋‹ค.


๋ฐ์ดํ„ฐ์…‹ ํƒ์ƒ‰


  1. ๋ฐ์ดํ„ฐ ์š”์•ฝ ์ •๋ณด

red_wine.info()

# <class 'pandas.core.frame.DataFrame'>
# RangeIndex: 1599 entries, 0 to 1598
# Data columns (total 12 columns):
#  #   Column                Non-Null Count  Dtype  
# ---  ------                --------------  -----  
#  0   fixed acidity         1599 non-null   float64
#  1   volatile acidity      1599 non-null   float64
#  2   citric acid           1599 non-null   float64
#  3   residual sugar        1599 non-null   float64
#  4   chlorides             1599 non-null   float64
#  5   free sulfur dioxide   1599 non-null   float64
#  6   total sulfur dioxide  1599 non-null   float64
#  7   density               1599 non-null   float64
#  8   pH                    1599 non-null   float64
#  9   sulphates             1599 non-null   float64
#  10  alcohol               1599 non-null   float64
#  11  quality               1599 non-null   int64  
# dtypes: float64(11), int64(1)
# memory usage: 150.0 KB

white_wine.info()

# <class 'pandas.core.frame.DataFrame'>
# RangeIndex: 4898 entries, 0 to 4897
# Data columns (total 12 columns):
#  #   Column                Non-Null Count  Dtype  
# ---  ------                --------------  -----  
#  0   fixed acidity         4898 non-null   float64
#  1   volatile acidity      4898 non-null   float64
#  2   citric acid           4898 non-null   float64
#  3   residual sugar        4898 non-null   float64
#  4   chlorides             4898 non-null   float64
#  5   free sulfur dioxide   4898 non-null   float64
#  6   total sulfur dioxide  4898 non-null   float64
#  7   density               4898 non-null   float64
#  8   pH                    4898 non-null   float64
#  9   sulphates             4898 non-null   float64
#  10  alcohol               4898 non-null   float64
#  11  quality               4898 non-null   int64  
# dtypes: float64(11), int64(1)
# memory usage: 459.3 KB

  red wine dataset์€ 1,599๊ฐœ์˜ ๋ฐ์ดํ„ฐ๋กœ ์ด๋ฃจ์–ด์ ธ์žˆ์œผ๋ฉฐ white wine dataset์€ 4,898๊ฐœ์˜ ๋ฐ์ดํ„ฐ๋กœ ์ด๋ฃจ์–ด์ ธ์žˆ๋‹ค. quality๋Š” inte64 ํƒ€์ž…์ด๋ฉฐ ์ด๋ฅผ ์ œ์™ธํ•œ ๋ณ€์ˆ˜๋“ค์€ float64 ํƒ€์ž…์œผ๋กœ ์ด๋ฃจ์–ด์ ธ์žˆ๋‹ค. ๋‘ dataset ๋ชจ๋‘ ๊ฒฐ์ธก์น˜๊ฐ€ ์กด์žฌํ•˜์ง€ ์•Š๋Š”๋‹ค.

728x90
๋ฐ˜์‘ํ˜•

  2. ๊ธฐ์ˆ  ํ†ต๊ณ„ ํ™•์ธ

# round(data, ndigits) ์˜ค์‚ฌ์˜ค์ž…(rounding half even) ๋ฐฉ์‹์˜ ๋ฐ˜์˜ฌ๋ฆผ ํ•จ์ˆ˜
round(red_wine.describe(), 4)

# 	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	pH	sulphates	alcohol	quality
# count	1599.0000	1599.0000	1599.0000	1599.0000	1599.0000	1599.0000	1599.0000	1599.0000	1599.0000	1599.0000	1599.0000	1599.0000
# mean	8.3196	0.5278	0.2710	2.5388	0.0875	15.8749	46.4678	0.9967	3.3111	0.6581	10.4230	5.6360
# std	1.7411	0.1791	0.1948	1.4099	0.0471	10.4602	32.8953	0.0019	0.1544	0.1695	1.0657	0.8076
# min	4.6000	0.1200	0.0000	0.9000	0.0120	1.0000	6.0000	0.9901	2.7400	0.3300	8.4000	3.0000
# 25%	7.1000	0.3900	0.0900	1.9000	0.0700	7.0000	22.0000	0.9956	3.2100	0.5500	9.5000	5.0000
# 50%	7.9000	0.5200	0.2600	2.2000	0.0790	14.0000	38.0000	0.9968	3.3100	0.6200	10.2000	6.0000
# 75%	9.2000	0.6400	0.4200	2.6000	0.0900	21.0000	62.0000	0.9978	3.4000	0.7300	11.1000	6.0000
# max	15.9000	1.5800	1.0000	15.5000	0.6110	72.0000	289.0000	1.0037	4.0100	2.0000	14.9000	8.0000

round(white_wine.describe(), 4)

# 	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	pH	sulphates	alcohol	quality
# count	4898.0000	4898.0000	4898.0000	4898.0000	4898.0000	4898.0000	4898.0000	4898.0000	4898.0000	4898.0000	4898.0000	4898.0000
# mean	6.8548	0.2782	0.3342	6.3914	0.0458	35.3081	138.3607	0.9940	3.1883	0.4898	10.5143	5.8779
# std	0.8439	0.1008	0.1210	5.0721	0.0218	17.0071	42.4981	0.0030	0.1510	0.1141	1.2306	0.8856
# min	3.8000	0.0800	0.0000	0.6000	0.0090	2.0000	9.0000	0.9871	2.7200	0.2200	8.0000	3.0000
# 25%	6.3000	0.2100	0.2700	1.7000	0.0360	23.0000	108.0000	0.9917	3.0900	0.4100	9.5000	5.0000
# 50%	6.8000	0.2600	0.3200	5.2000	0.0430	34.0000	134.0000	0.9937	3.1800	0.4700	10.4000	6.0000
# 75%	7.3000	0.3200	0.3900	9.9000	0.0500	46.0000	167.0000	0.9961	3.2800	0.5500	11.4000	6.0000
# max	14.2000	1.1000	1.6600	65.8000	0.3460	289.0000 440.0000	1.0390	3.8200	1.0800	14.2000	9.0000

 

(1) fixed_acidity (๊ณ ์ • ์‚ฐ๋„)

  • Red Wine: ํ‰๊ท  8.32, ํ‘œ์ค€ํŽธ์ฐจ 1.74
  • White Wine: ํ‰๊ท  6.85, ํ‘œ์ค€ํŽธ์ฐจ 0.84
  • ํ•ด์„:
    • ์ ์ƒ‰ ์™€์ธ์ด ๋ฐฑ์ƒ‰ ์™€์ธ๋ณด๋‹ค ๊ณ ์ • ์‚ฐ๋„๊ฐ€ ๋” ๋†’์Œ
    • ์ด๋Š” ์ ์ƒ‰ ์™€์ธ์ด ๋ฐฑ์ƒ‰ ์™€์ธ๋ณด๋‹ค ์‹ ๋ง›(Tartness)์ด ๋” ๊ฐ•ํ•  ์ˆ˜ ์žˆ์Œ์„ ์˜๋ฏธ
    • ์ ์ƒ‰ ์™€์ธ์˜ ๊ณ ์ • ์‚ฐ๋„ ๋ถ„ํฌ๊ฐ€ ๋” ๋„“์–ด ๋‹ค์–‘์„ฑ์ด ํผ

(2) volatile_acidity (ํœ˜๋ฐœ์„ฑ ์‚ฐ๋„)

  • Red Wine: ํ‰๊ท  0.53, ํ‘œ์ค€ํŽธ์ฐจ 0.18
  • White Wine: ํ‰๊ท  0.28, ํ‘œ์ค€ํŽธ์ฐจ 0.10
  • ํ•ด์„:
    • ์ ์ƒ‰ ์™€์ธ์˜ ํœ˜๋ฐœ์„ฑ ์‚ฐ๋„๊ฐ€ ๋ฐฑ์ƒ‰ ์™€์ธ๋ณด๋‹ค ์•ฝ ๋‘ ๋ฐฐ ๋†’์Œ
    • ์ด๋Š” ์ ์ƒ‰ ์™€์ธ์—์„œ ํœ˜๋ฐœ์„ฑ ์‚ฐ๋„๊ฐ€ ํ’ˆ์งˆ์— ๋” ํฐ ์˜ํ–ฅ์„ ๋ฏธ์น  ๊ฐ€๋Šฅ์„ฑ์ด ์žˆ์Œ์„ ์˜๋ฏธ
    • ๋ฐฑ์ƒ‰ ์™€์ธ์€ ํœ˜๋ฐœ์„ฑ ์‚ฐ๋„๊ฐ€ ๋‚ฎ์•„ ํ’ˆ์งˆ์— ๋œ ๋ถ€์ •์ ์ธ ์˜ํ–ฅ์„ ์ค„ ์ˆ˜ ์žˆ์Œ

(3) citric_acid (๊ตฌ์—ฐ์‚ฐ)

  • Red Wine: ํ‰๊ท  0.27, ํ‘œ์ค€ํŽธ์ฐจ 0.19
  • White Wine: ํ‰๊ท  0.33, ํ‘œ์ค€ํŽธ์ฐจ 0.12
  • ํ•ด์„:
    • ๋ฐฑ์ƒ‰ ์™€์ธ์˜ ๊ตฌ์—ฐ์‚ฐ ๋†๋„๊ฐ€ ์ ์ƒ‰ ์™€์ธ๋ณด๋‹ค ๋” ๋†’์Œ
    • ์ด๋Š” ๋ฐฑ์ƒ‰ ์™€์ธ์ด ์‹ ์„ ํ•˜๊ณ  ๊ฒฝ์พŒํ•œ ๋ง›์„ ๋” ์ž˜ ์œ ์ง€ํ•˜๋Š” ๋ฐ ๊ธฐ์—ฌํ•  ๊ฐ€๋Šฅ์„ฑ์ด ์žˆ์Œ
    • ์ ์ƒ‰ ์™€์ธ์˜ ๊ตฌ์—ฐ์‚ฐ ๋ถ„ํฌ๊ฐ€ ๋” ๋„“์–ด ๋‹ค์–‘์„ฑ์ด ํผ

(4) residual_sugar (์ž”๋ฅ˜ ๋‹น๋ถ„)

  • Red Wine: ํ‰๊ท  2.54, ์ตœ๋Œ€ 15.5
  • White Wine: ํ‰๊ท  6.39, ์ตœ๋Œ€ 65.8
  • ํ•ด์„:
    • ๋ฐฑ์ƒ‰ ์™€์ธ์˜ ์ž”๋ฅ˜ ๋‹น๋ถ„ ๋†๋„๊ฐ€ ์ ์ƒ‰ ์™€์ธ๋ณด๋‹ค ํ›จ์”ฌ ๋†’์Œ
    • ์ด๋Š” ๋ฐฑ์ƒ‰ ์™€์ธ์ด ๋‹จ๋ง›(Sweetness)์„ ๋” ๋งŽ์ด ๋Š๋ผ๊ฒŒ ํ•  ์ˆ˜ ์žˆ์Œ์„ ๋‚˜ํƒ€๋ƒ„
    • ๋ฐฑ์ƒ‰ ์™€์ธ์˜ ์ตœ๋Œ€๊ฐ’(65.8)์€ ์ ์ƒ‰ ์™€์ธ์˜ ์ตœ๋Œ€๊ฐ’(15.5)๋ณด๋‹ค ์›”๋“ฑํžˆ ๋†’์•„ ์ด์ƒ์น˜ ๋ถ„์„์ด ํ•„์š”

(5) chlorides (์—ผํ™”๋ฌผ)

  • Red Wine: ํ‰๊ท  0.087, ์ตœ๋Œ€ 0.611
  • White Wine: ํ‰๊ท  0.046, ์ตœ๋Œ€ 0.346
  • ํ•ด์„:
    • ์ ์ƒ‰ ์™€์ธ์˜ ์—ผํ™”๋ฌผ ๋†๋„๊ฐ€ ๋ฐฑ์ƒ‰ ์™€์ธ๋ณด๋‹ค ์•ฝ ๋‘ ๋ฐฐ ๋†’์Œ
    • ๋†’์€ ์—ผํ™”๋ฌผ ๋†๋„๋Š” ํ’ˆ์งˆ์— ๋ถ€์ •์ ์ธ ์˜ํ–ฅ์„ ์ค„ ์ˆ˜ ์žˆ์Œ

(6) free_sulfur_dioxide (์œ ๋ฆฌ ์•„ํ™ฉ์‚ฐ)

  • Red Wine: ํ‰๊ท  15.87, ์ตœ๋Œ€ 72
  • White Wine: ํ‰๊ท  35.31, ์ตœ๋Œ€ 289
  • ํ•ด์„:
    • ๋ฐฑ์ƒ‰ ์™€์ธ์˜ ์œ ๋ฆฌ ์•„ํ™ฉ์‚ฐ ๋†๋„๊ฐ€ ์ ์ƒ‰ ์™€์ธ๋ณด๋‹ค ๋‘ ๋ฐฐ ์ด์ƒ ๋†’์Œ
    • ์ด๋Š” ๋ฐฑ์ƒ‰ ์™€์ธ์ด ์‚ฐํ™”๋ฅผ ๋ฐฉ์ง€ํ•˜๊ณ  ์‹ ์„ ๋„๋ฅผ ์œ ์ง€ํ•˜๊ธฐ ์œ„ํ•ด ๋” ๋งŽ์€ ์•„ํ™ฉ์‚ฐ์„ ํ•„์š”๋กœ ํ•จ์„ ์˜๋ฏธ

(7) total_sulfur_dioxide (์ด ์•„ํ™ฉ์‚ฐ)

  • Red Wine: ํ‰๊ท  46.47, ์ตœ๋Œ€ 289
  • White Wine: ํ‰๊ท  138.36, ์ตœ๋Œ€ 440
  • ํ•ด์„:
    • ๋ฐฑ์ƒ‰ ์™€์ธ์ด ์ ์ƒ‰ ์™€์ธ๋ณด๋‹ค ์•ฝ ์„ธ ๋ฐฐ ๋งŽ์€ ์ด ์•„ํ™ฉ์‚ฐ์„ ํฌํ•จ
    • ๋ฐฑ์ƒ‰ ์™€์ธ์˜ ๋ณด์กด์„ฑ๊ณผ ๊ด€๋ จ๋œ ์ค‘์š”ํ•œ ์ฐจ์ด์ 

(8) density (๋ฐ€๋„)

  • Red Wine: ํ‰๊ท  0.9967
  • White Wine: ํ‰๊ท  0.9940
  • ํ•ด์„:
    • ๋ฐฑ์ƒ‰ ์™€์ธ์ด ์ ์ƒ‰ ์™€์ธ๋ณด๋‹ค ๋ฐ€๋„๊ฐ€ ๋‚ฎ์Œ
    • ์ด๋Š” ๋ฐฑ์ƒ‰ ์™€์ธ์ด ์•Œ์ฝ”์˜ฌ ๋†๋„๊ฐ€ ๋” ๋†’๊ณ  ๋‹น๋ถ„ ํ•จ๋Ÿ‰์ด ๋” ๋†’๊ธฐ ๋•Œ๋ฌธ์ผ ๊ฐ€๋Šฅ์„ฑ์ด ํผ

(9) pH

  • Red Wine: ํ‰๊ท  3.31
  • White Wine: ํ‰๊ท  3.19
  • ํ•ด์„:
    • ์ ์ƒ‰ ์™€์ธ์˜ pH๊ฐ€ ๋ฐฑ์ƒ‰ ์™€์ธ๋ณด๋‹ค ์•ฝ๊ฐ„ ๋†’์•„ ๋œ ์‚ฐ์„ฑ์ž„
    • ์ด๋Š” ์ ์ƒ‰ ์™€์ธ์ด ๋ฐฑ์ƒ‰ ์™€์ธ๋ณด๋‹ค ์•ฝ๊ฐ„ ๋” ๋ถ€๋“œ๋Ÿฝ๊ณ  ๋‘ฅ๊ทผ ๋ง›์„ ์ œ๊ณตํ•  ๊ฐ€๋Šฅ์„ฑ์ด ์žˆ์Œ

(10) alcohol (์•Œ์ฝ”์˜ฌ)

  • Red Wine: ํ‰๊ท  10.42, ์ตœ๋Œ€ 14.9
  • White Wine: ํ‰๊ท  10.51, ์ตœ๋Œ€ 14.2
  • ํ•ด์„:
    • ๋‘ ์™€์ธ์˜ ์•Œ์ฝ”์˜ฌ ๋†๋„๋Š” ๋น„์Šทํ•œ ๋ถ„ํฌ๋ฅผ ๋ณด์ž„
    • ๋ฐฑ์ƒ‰ ์™€์ธ์˜ ํ‰๊ท  ์•Œ์ฝ”์˜ฌ ๋†๋„๊ฐ€ ์•ฝ๊ฐ„ ๋” ๋†’์Œ

(11) quality (ํ’ˆ์งˆ ์ ์ˆ˜)

  • Red Wine: ํ‰๊ท  5.64, ์ตœ๋Œ€ 8
  • White Wine: ํ‰๊ท  5.88, ์ตœ๋Œ€ 9
  • ํ•ด์„:
    • ๋ฐฑ์ƒ‰ ์™€์ธ์˜ ํ’ˆ์งˆ ์ ์ˆ˜ ํ‰๊ท ์ด ์ ์ƒ‰ ์™€์ธ๋ณด๋‹ค ์•ฝ๊ฐ„ ๋” ๋†’์Œ
    • ํ’ˆ์งˆ ์ ์ˆ˜์˜ ์ตœ๋Œ€๊ฐ’์—์„œ๋„ ๋ฐฑ์ƒ‰ ์™€์ธ์ด ๋” ๋†’์€ ํ’ˆ์งˆ์„ ๊ธฐ๋ก

 ๋ฐ์ดํ„ฐ ๋ถ„์„ ์š”์•ฝ

  • ์‚ฐ๋„ (fixed_acidity & volatile_acidity): ์ ์ƒ‰ ์™€์ธ์ด ์‚ฐ๋„๊ฐ€ ๋” ๋†’์•„ ์‹ ๋ง›์ด ๊ฐ•ํ•  ๊ฐ€๋Šฅ์„ฑ์ด ํผ
  • ๋‹จ๋ง› (residual_sugar): ๋ฐฑ์ƒ‰ ์™€์ธ์ด ํ›จ์”ฌ ๋” ๋‹จ๋ง›์„ ๋งŽ์ด ๊ฐ€์ง
  • ์•„ํ™ฉ์‚ฐ (sulfur_dioxide): ๋ฐฑ์ƒ‰ ์™€์ธ์ด ์‚ฐํ™” ๋ฐฉ์ง€๋ฅผ ์œ„ํ•ด ๋” ๋งŽ์€ ์•„ํ™ฉ์‚ฐ์„ ์‚ฌ์šฉ
  • ํ’ˆ์งˆ (quality): ๋ฐฑ์ƒ‰ ์™€์ธ์˜ ํ‰๊ท  ํ’ˆ์งˆ์ด ์ ์ƒ‰ ์™€์ธ๋ณด๋‹ค ์•ฝ๊ฐ„ ๋” ๋†’์Œ
๋ฐ˜์‘ํ˜•